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§1. Introduction. Among the standard notions of cobordism theory is the
concept of ‘cobordism of manifolds with additional structure on the normal
bundle’. Briefly, one begins with a fibration

f:B— BO

where BO is the classifying space for the stable orthogonal group O, and a
(B, f) manifold is a compact differentiable manifold M" together with a homotopy
class of liftings of the normal map of M, v : M — BO, to B. The cobordism group
of closed n-dimensional (B, f) manifolds will be denoted @,(B, f).

Let f, : B, — BO, be the fibration induced from f by the inclusion of BO,
in BO and let g, : B, — B,., be the fibre map induced by the inclusion of BO,
in BO,,, . The Thom space Tf*(y") is formed by collapsing to a point, «, all
vectors of length at least one in the bundle f%(y") over B, induced from the
canonical r-plane bundle " over BO, . The fibre maps ¢, induce maps

Ty, : ZTHG) — TfE.6")

where 2 denotes the suspension, defining a spectrum TB = {T7*(y"), Tg,}.
The primary result in this form of cobordism theory is the generalized
Pontrjagin-Thom theorem:

The cobordism group of n-dimensional closed (B, f) manifolds is isomorphic
to the n-th stable homotopy group of the spectrum TB; i.e.

(B, f) = lim, o mpsr - (TR, ®).

Note: A full discussion of the above ideas may be found in Lashof [3].
One way to construct such cobordism theories is to be given a representation
p : G — 0, G being a topological group. One then has induced a fibration on the
classifying space level
Bp : BG — BO.
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