Quasi-Linear Elliptic Boundary Value Problems

MARTIN H. SCHULTZ

Communicated by Garret Birkhoff

1. Introduction. Let Ω be a region in \mathbb{R}^n and $\partial\Omega$ denote the boundary of Ω . We consider quasi-linear elliptic boundary value problems of the form

(1)
$$L[u] \equiv \sum_{\substack{|\alpha| \leq m \\ |\beta| \leq m}} (-1)^{|\alpha|} D^{\alpha}(a_{\alpha\beta}(x)D^{\beta}u) = f(x, u, \cdots),$$

$$x \in \Omega$$
, $a_{\alpha\beta}(x) = a_{\beta\alpha}(x)$, $|\alpha|$, $|\beta| \leq m$,

(2)
$$L[u] \equiv \lambda f(x, u, \dots), \qquad x \in \Omega,$$

subject to the boundary conditions

(3)
$$D^{i}u(x) = 0, \quad x \in \partial\Omega, \quad 0 \leq j \leq m-1,$$

where we have freely used multi-index notation, cf. [1], [2], or [3], and $f(x, u, \cdots)$ denotes a function of x, u, and possibly all derivatives $D^{\alpha}u$ with $|\alpha| \leq m$.

This class of problems has been studied in [1], [2], and [3] under the restrictions that the coefficients $a_{\alpha\beta}(x)$ are measurable and uniformly bounded in Ω , that there exists a positive constant C such that

(4)
$$(L[w], w)_{L^{2}(\Omega)} \ge C ||w||_{W^{m,2}(\Omega)}^{2} \equiv C \left(\sum_{|\alpha| \le m} \int_{\Omega} |D^{\alpha}w(x)|^{2} dx \right)$$

for all $w \in W_0^{m,2}(\Omega)$, i.e., for all w in the closure of $C_0^{\infty}(\Omega)$ with respect to $||\cdot||_{W^{m,2}(\Omega)}$, and that f depends on x and $D^{\alpha}u$ with $|\alpha| \leq m-1$, but not $D^{\alpha}u$ with $|\alpha| = m$.

In this paper, we extend the results of [1] to problems in which the differential operator L satisfies a weaker "positive definite" hypothesis than (4) and f depends on x and $D^{\alpha}u$ with $|\alpha| \leq m$. The price of this extension is a slightly stronger hypothesis on the smoothness of the coefficients $a_{\alpha\beta}(x)$.

2. Main results. Throughout this paper the coefficients $a_{\alpha\beta}(x)$ are assumed (I) to be bounded, measurable functions such that the domain of L, $\mathfrak{D}(L)$, in $L^2(\Omega)$ can be taken to be those C^2 functions satisfying the boundary condi-