A Priori Bounds for Solutions of Quasi-Linear Elliptic Differential Equations

MARTIN H. SCHULTZ

Communicated by Garret Birkhoff

1. Introduction. Let Ω be a region in \mathbb{R}^n , $n=1, 2, \cdots, 5, \partial\Omega$ denote its boundary. We consider quasi-linear elliptic differential equations of the form

(1)
$$L[u] \equiv -\sum_{|\alpha|,|\beta| \leq 1} D^{\alpha}(a_{\alpha\beta}(x)D^{\beta}u) = f(x,u), \qquad x \in \Omega$$

subject to the boundary conditions

(2)
$$u(x) = 0, \qquad x \in \partial\Omega,$$

where we have freely used the standard multi-index notation, cf. [15]. For example, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and if $\alpha = (\alpha_1, \dots, \alpha_n)$ is any index whose components are non-negative integers, $|\alpha| \equiv \alpha_1 + \alpha_2 + \dots + \alpha_n$ and $D^{\alpha} \equiv D_1^{\alpha_1} \cdots D_n^{\alpha_n} \equiv \partial^{\alpha_1 + \dots + \alpha_n}/\partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}$. A basic question, both in proving the existence of a solution of (1), (2) by means of the Schauder Fixed Point Theorem, cf. [1], [8], and in approximating that solution numerically, cf. [5], [6], [7], [11], [12], and [13] is whether or not we can obtain an a priori bound for classical solutions of (1), (2) in the uniform norm over Ω .

The special case of n=2, $L\equiv -\Delta$ has been studied by many people. In [6] a uniform norm a priori bound was obtained for the case in which $\partial f/\partial u \leq \gamma < 1/\rho$, where $\rho \equiv \max_{x \in \Omega} |\psi(x)|$ and $\Delta \psi(x) = -1$, $x \in \Omega$, $\psi(x) = 0$, $x \in \partial \Omega$. In [9] such an a priori bound was obtained for the case in which

$$\lim_{|u|\to\infty}\inf f(x,u)/u\geq 0,$$

and in [11] such an a priori bound was obtained for the case in which there exists a positive constant u_0 such that $f(x, u)/u \leq -(1/a)^2$ for all $|u| \geq u_0$, where Ω is contained in the strip $|x_1| \leq a$. In this paper, we give new conditions on the problem (1), (2) which guarantee the existence of a uniform norm a priori bound.

2. Main results. We assume throughout this paper that the coefficients, $a_{\alpha\beta}(x)$, $|\alpha|$, $|\beta| \leq 1$, are real-valued, bounded, measurable functions in Ω and