Calculus of Set Valued Functions and Control

HENRY HERMEST

Communicated by Jurgin Moser

Introduction. A beginning of what might be called a calculus of set valued functions can be found in [1]. Many references pertaining to this field are motivated by the mathematical theory of economics with problems of a similar nature appearing in the study of generalized differential equations having the form $\dot{x}(t) \in R(t, x(t))$, $(\dot{x}(t) = d/dt \, x(t))$ where R is a set valued function. Such equations, commonly called contingent equations, arise naturally from control systems.

Following the notation of [1], if P is a function defined on a real interval [0, T] with values P(t) nonempty subsets of Euclidean n space, E^n , we define

$$\int_0^\tau P(\tau) \ d\tau = \left\{ \int_0^\tau p(\tau) \ d\tau : p \text{ is measurable, } p(\tau) \ \epsilon \ P(\tau) \right\}.$$

We shall use measurable to mean Lebesgue measurable and prefix the word when it is used in a different sense.

It is always true that $\int_0^T P(\tau) d\tau$ is convex. Furthermore, as shown in [1], if the graph of P is a Borel subset when considered as a subset of $[0, T] \times E^n$, then $\int_0^T P(\tau) d\tau$ is nonempty. In this case P is termed Borel measurable. If P is Borel measurable with values subsets of a fixed compact subset of E^n , $\int_0^T P(\tau) d\tau = \int_0^T \cos P(\tau) d\tau$ where co P is the set valued function with values co P(t) the convex hull of P(t). If, in addition, the values of P are closed subsets, $\int_0^T P(\tau) d\tau$ is compact. These results will find constant use in this paper; they generalize previous work in [4] and [10].

If P is a Borel measurable set valued function with values nonempty, compact subsets of a given compact set in E^n and $\mathfrak{A}(t) = \int_0^t P(\tau) d\tau$, we shall call \mathfrak{A} the integral of P. In Section 1 we use a result of Plis, [8], on a Lusin theorem for measurable set valued functions to show that $\lim_{h\to 0} (1/h) \int_t^{t+h} P(\tau) d\tau = \operatorname{co} P(t)$ for almost all $t \in [0, T]$. From this and Theorem 3 of [1], it can be shown that a necessary and sufficient condition that $\int_0^t P^1(\tau) d\tau = \int_0^t P^2(\tau) d\tau$ for all $t \in [0, T]$ is that $\operatorname{co} P^1(t) = \operatorname{co} P^2(t)$ almost everywhere. Thus if \mathfrak{A} is the integral

[†] This research was sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR grant Nr. 1243-67.