Fiber Bundles with Singularities

P. T. CHURCH¹ & J. G. TIMOURIAN²

Communicated by Andrew Wallace

- 1. Introduction. Let M and N be connected topological spaces. A singular fibering is a map $f: (M, A_f) \to (N, f(A_f))$ such that
 - (1) $A_f \neq M$ and is closed;
 - (2) $f \mid A_f$ is a homeomorphism and $f^{-1}(f(A_f)) = A_f$;
- (3) for each component W of $N f(A_f)$, $f \mid f^{-1}(W)$ is the projection map of a fiber bundle with base space W (and possibly empty fiber). Moreover, we may suppose that
 - (4) A_f is a minimal set satisfying (1), (2), and (3).

This concept is a generalization of one introduced by Montgomery and Samelson [20], and related versions have been studied by Conner and Dyer [11], Mahowald [19], and Antonelli [1]. Other concepts of singular fibering have been investigated in [3], [15], [22], [26], [31], [32], and [33]. For a description of the relation between [32] and this paper, see (1.8).

Given maps $\psi: P \to Q$ and $\omega: R \to S$, define $\psi \times \omega: P \times R \to Q \times S$ by $\psi \times \omega(p, r) = (\psi(p), \omega(r))$. Define the open cone c(P) as the identification space obtained from $P \times [0, 1)$ by identifying $P \times \{0\}$ to a point p^* , let ι be the identify map on [0, 1), and let the cone map $c(\psi):c(P)\to c(Q)$ be the map induced by $\psi \times \iota$. Let ι_k be the identity map on E^k .

- 1.1. Examples. In each of (i), (ii), and (iii) below a map ψ is defined, and
- $c(\psi) \times \iota_k$ is a singular fibering with singular set A, a k-cell $(k = 0, 1, \cdots)$. (i) Let m = 2, 4, or 8, and let $\psi : S^{2m-1} \to S^m$ be a locally trivial fiber map with fiber S^{m-1} (or a homotopy 3-sphere in case m=4); examples are the Hopf maps [28; p. 105-110].
- (ii) Let T^m be a homotopy sphere such that $c(T^m)$ is an open (m + 1)manifold, and let $\psi: T^m \to E^0$ $(m = 0, 1, \cdots)$.
- (iii) Let $\psi: S^1 \to S^1$ be a d-to-1 covering map with d > 1, e.g., $\psi(\theta) = d \cdot \theta$ (mod 2π).

¹ Supported in part by an N.S.F. Senior Postdoctoral Fellowship at the Institute for Advanced Study. 1,2 Supported in part by N.S.F. Grant GP-6871.