A Characterization of Analyticity. III

KENNETH O. LELAND¹

Communicated by E. R. LORCH

- 1. Introduction. This paper continues the development of the theory of families of real analytic functions characterized by Lipschitz type conditions initiated in [4] and continued in [6]. Handled here is the case of solution spaces of elliptic homogeneous constant coefficient partial differential equations. It will be shown that a suitably defined family of functions on a Euclidean space E into the reals R, either satisfies a uniform Lipschitz condition and consists of analytic functions, or contains arbitrary continuous functions satisfying no Lipschitz condition whatsoever.
- 2. Notation and definitions. Let R denote the real numbers and ω the positive integers. Throughout this paper E will denote a fixed Euclidean space of dimension p, $p \in \omega$. For $x \in E$, $\delta > 0$, set $U_x(\delta) = \{y \in E; ||y x|| < \delta\}$, $B_x(\delta) = \{y \in E; ||y x|| = \delta\}$, and set $U(\delta) = U_0(\delta)$, $B(\delta) = B_0(\delta)$, U = (U1) and V = B(1). Let G denote the rotation group (group of unitary linear transformations of E into E) of E. Let F(E, R) be the family of continuous functions on open subsets of E into E. For $f \in F(E, R)$, and E an invertible map of E onto E, we set (fA)(x) = f(A(x)) for all $x \in \{t \in E; A(t) \in \text{dom } f\}$.

Let $F \subseteq F(E, R)$. Then F is called a T family if

- (1) For f, $g \in F$, F contains the function h such that h(x) = f(x) + g(x) for $x \in \text{dom } f \cap \text{dom } g$.
 - (2) For $f \in F$, $r \in R$, $rf \in F$.
 - (3) For $f \in F$, S an open subset of dom f, the restriction $f \mid S$ of f to S lies in F.
- (4) For $f \in F$, $x \in E$, F contains the translate fA_x , where $A_x(y) = x y$ for $y \in E$.

F is called an R family if for $f \, \epsilon \, F$, r > 0, F contains the function fA, where $A_r(x) = rx$ for $x \, \epsilon \, E$. F is called a G family if for $f \, \epsilon \, F$, $g \, \epsilon \, G$, $fg \, \epsilon \, F$. F is called an L family if there exists N > 0, such that for $f \, \epsilon \, F$, $\tilde{U} \subseteq \text{dom } f$, we have

$$|f(x) - f(0)| \le N \sup \{|f(t)|; t \in U\} ||x||$$

¹ This research supported by NSF Grant GP-6311.