Boundary Value Problems for Symmetric Positive Differential Operators of Odd Order*

MICHAEL G. CRANDALL

Communicated by Ralph Phillips

Introduction. This paper treats a generalization to any odd order of the concept of first order symmetric positive systems of partial differential equations as introduced by K. O. Friedrichs [3]. In particular, we define concepts of weak and strong solutions of appropriate boundary value problems and show these concepts coincide (i.e., "weak = strong"). This result is then used to establish existence and uniqueness of strong solutions of our symmetric positive boundary value problems.

We set up the problem in the following way. Let $k \geq 0$ be an integer. Let Ω be an open subset of E^p (real p-dimensional Euclidean space) with a smooth boundary β . $H_0^k(\Omega)$ is the usual Hilbert space of complex m-vector-valued functions obtained by completing $C_0^{\infty}(\Omega)$ under the norm induced by the inner product

$$(u,v)_k = \sum_{|\alpha| \le k} (D^{\alpha}u, D^{\alpha}v) \qquad (u,v \in C_0^{\infty}(\Omega)),$$

where $D^{\alpha} = D_{1}^{\alpha_{1}} \cdots D_{p}^{\alpha_{p}} = (\partial/\partial x_{1})^{\alpha_{1}} \cdots (\partial/\partial x_{p})^{\alpha_{p}}, |\alpha| = \alpha_{1} + \cdots + \alpha_{p}$ and $(\ ,\)$ is the $\mathfrak{L}_{2}(\Omega)$ inner product. Let $H_{0}^{-k}(\Omega)$ be the subset of distributions in Ω which have linear extensions from $C_{0}^{\infty}(\Omega)$ to $H_{0}^{k}(\Omega)$ which are continuous on $H_{0}^{k}(\Omega)$. With a suitable interpretation (see Sec. 1) $H_{0}^{-k}(\Omega)$ is the dual of $H_{0}^{k}(\Omega)$ with respect to an extension of the $\mathfrak{L}_{2}(\Omega)$ inner product, and given the topology induced by this identification it is a Hilbert space. Differential operators of order at most 2k define bounded linear operators from $H_{0}^{k}(\Omega)$ into $H_{0}^{-k}(\Omega)$. Now let

$$L = \sum_{|\alpha| \le 2k+1} A_{\alpha} D^{\alpha}$$

be a differential expression of order 2k+1 where the A_{α} are smooth $m \times m$ matrix valued functions in $\Omega \cup \beta$. Let N be a function mapping $x \in \beta$ into N(x),

^{*} This research is supported in part by the Office of Naval Research Nonr 222(62) and the National Science Foundation Grant GP 7458.