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Introduction. This paper treats a generalization to any odd order of the
concept of first order symmetric positive systems of partial differential equations
as introduced by K. O. Friedrichs [3]. In particular, we define concepts of weak
and strong solutions of appropriate boundary value problems and show these
concepts coincide (i.e., “weak = strong’’). This result is then used to establish
existence and uniqueness of strong solutions of our symmetric positive boundary
value problems.

We set up the problem in the following way. Let & = 0 be an integer. Let Q be
an open subset of E? (real p-dimensional Euclidean space) with a smooth bound-
ary B. H5(Q) is the usual Hilbert space of complex m-vector-valued functions
obtained by completing C3(2) under the norm induced by the inner product

(w, v), = .g;k (D%, D)  (u,ve C5(Q),
where D* = D{* «+- D;* = (9/0x,)** +-+ (8/02,) % |o| = &y + -+ + @, and
(, ) is the £,(Q) inner product. Let H;*(Q) be the subset of distributions in Q
which have linear extensions from C5(Q) to H%(Q) which are continuous on
H5(Q). With a suitable interpretation (see Sec. 1) H;*(Q) is the dual of HE(Q)
with respect to an extension of the £,(®2) inner product, and given the topology
induced by this identification it is a Hilbert space. Differential operators of

order at most 2k define bounded linear operators from HE(Q) into H;*(Q).
Now let

L= Y A,D*"

lals2k+1

be a differential expression of order 2k + 1 where the A, are smooth m X m
matrix valued functions in @ \U 8. Let N be a function mapping z & 8 into N (z),
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