Lipschitz Spaces and Bernstein's Theorem on Absolutely Convergent Fourier Transforms*

C. S. HERZ

Communicated by M. KAC

0. Introduction. The two most important results involving Lipschitz spaces are Bernstein's Theorem and Sobolev's Lemma. They are statements of the following form.

Bernstein's Theorem. $\mathfrak{F}: \mathbf{\Lambda} \to \mathbf{L}_p$ (F signifies Fourier transform);

Sobolev's Lemma. $\Lambda \subset L_a$, where Λ is an appropriate Lipschitz space.

There are various notions of "Lipschitz space" which have been considered. We shall introduce spaces $\mathbf{\Lambda}_{a,p}^{\alpha}$ which are the simplest to define and yield the most powerful theorems. Our spaces $\mathbf{\Lambda}_{a,p}^{\alpha}$ are closely related to the spaces $\mathbf{\Lambda}(\alpha; a, p)$ studied by Taibleson [6]. When $\alpha > 0$, $\mathbf{\Lambda}(\alpha; a, p) = \mathbf{\Lambda}_{a,p}^{\alpha} \cap \mathbf{L}_a$; the full details will be found in Appendix 2.

The precise definition of $\mathbf{\Lambda}_{a,p}^{\alpha}$ is given at the beginning of Section 1. There are, up to equivalence, many ways of defining the $\mathbf{\Lambda}_{a,p}^{\alpha}$ -norm. The easiest approach is to use a concrete definition in terms of differences. Given a function f, a positive integer k, and $1 \leq a \leq \infty$ we put $\omega(h) = ||\Delta^k(h)f||_a$ where $\Delta^k(h)$ is the kth difference operator. For $0 < \alpha < k$ we define $\mathbf{\Lambda}_{a,p}^{\alpha}(f)$ to be the \mathcal{L}_p -norm (using the dilation-invariant measure on $R^n - \{0\}$ in h of $|h|^{-\alpha} \omega(h)$. Note that the $\mathbf{\Lambda}_{a,p}^{\alpha}$ -norm depends only on (arbitrarily high order) differences of the function. The $\mathbf{\Lambda}_{a,p}^{\alpha}$ -spaces with $\alpha > 0$ are the Banach spaces obtained by completing $\mathfrak D$ (infinitely differentiable functions of compact support) for the $\mathbf{\Lambda}_{a,p}^{\alpha}$ -norm. The basic facts about the $\mathbf{\Lambda}_{a,p}^{\alpha}$ spaces for $\alpha > 0$ are given in §1. It is technically convenient to extend the definition to $\alpha \leq 0$; this is done in §6 where we show that $f \in \mathbf{\Lambda}_{a,p}^{\alpha}$ iff its derivatives of order β are in $\mathbf{\Lambda}_{a,p}^{\alpha-\beta}$.

The multiplicity of indices may seem to be an annoyance, but they are really held to a minimum necessary for precise statements. Indeed, for Sobolev's Lemma and Bernstein's Theorem it is desirable to complicate the Lebesgue spaces. Sobolev's Lemma in the form $\Lambda \subset L_a$ (which includes the original

^{*} Part of the research for this paper was sponsored by the National Science Foundation Contracts GP 6145 and 7478.