Interpolation by Ritz Approximation

BERNIE L. HULME

Communicated by Garrett Birkhoff

1. Introduction. We obtain below interpolation properties and sharpened error bounds for approximate piecewise polynomial solutions to

(1)
$$u^{(2n)}(x) = r(x), \quad a \le x \le b, \quad n \ge 1,$$

(2)
$$u^{(i)}(a) = 0, \quad u^{(i)}(b) = 0, \quad j = 0, \ldots, n-1,$$

obtained by variational methods. It is classic that the exact solution of (1) - (2), $\bar{u}(x)$, minimizes

(3)
$$J[u] = \frac{1}{2} \int_a^b \left[u^{(n)}(x) \right]^2 dx - (-1)^n \int_a^b r(x) u(x) dx.$$

over $K_0^{n,2}[a, b]$, the linear space of all real-valued functions u(x) defined on [a, b], such that $u^{(n-1)}(x)$ is absolutely continuous on [a, b], $u^{(n)}(x) \in L^2[a, b]$, and u(x) satisfies the homogeneous conditions (2).

Let π : $a = x_0 < x_1 < \cdots < x_N = b$ be any partition of [a,b] with $\bar{h} = \max \Delta x_i$. For fixed n and π consider a two-parameter family of spaces $F(\pi, p, 2m)$ consisting of functions $y \in C^{p-1}[a, b]$ which are polynomials of degree 2m - 1 on each subinterval $[x_i, x_{i+1}]$, where $m \ge n$ and $n \le p \le 2m - 1$. Finally let $F_0(\pi, p, 2m) \subset F(\pi, p, 2m)$ denote the subspaces of functions which satisfy (2). We shall minimize J over each $F_0(\pi, p, 2m)$.

Using the notation

$$y^{(-i)}(x) \equiv \int_a^x \int_a^{t_1} \cdots \int_a^{t_{j-1}} y(t_i) dt_i \cdots dt_1, \quad j \ge 1,$$

we state in the following theorem our main result, which is an extension of the spline interpolation results of de Boor and Lynch [1].

Theorem 1. The minimum of J on $F_0(\pi, p, 2m)$, where m = n + q, $q \ge 0$, and $n \le p \le 2m - 1$, is given by $\bar{y} \in F_0(\pi, p, 2m)$ which interpolates $\bar{u}^{(i)}(x_i)$ for all $x_i \in \pi$ and $j = -2q, \ldots, 2n - p - 1$, as well as $\bar{u}^{(i)}(a)$ and $\bar{u}^{(i)}(b)$ for $j = -2q, \ldots, n-1$.

2. Proof of Theorem 1 and error bounds. The proof of Theorem 1 requires

337

Journal of Mathematics and Mechanics, Vol. 18, No. 4 (1968).