An Existence Theorem for a Class of Nonlinear Integral Equations with Applications to a Non-linear Elliptic Boundary Value Problem*

CHARLES V. COFFMAN

Communicated by IAN N. SNEDDON

In [5], Nehari proved that if Ω is a bounded real interval, K a symmetric positive definite kernel which is continuous on $\Omega \times \Omega$, and F a non-negative continuous function on $\overline{R}_+ \times \Omega$ satisfying, for some $\epsilon > 0$,

(1)
$$0 < \eta_1^{-\epsilon} F(\eta_1, x) \leq \eta_2^{-\epsilon} F(\eta_2, x), \quad 0 < \eta_1 < \eta_2 < \infty,$$

for all $x \in \Omega$, then the integral equation

(2)
$$y(x) = \int_{\Omega} K(x, t) y(t) F(y^{2}(t), t) dt,$$

has a non-trivial solution which is continuous on Ω . The proof uses variational methods. In this note we shall prove, using arguments similar to those of [5], that if Ω is a bounded region in R^n (*n*-dimensional Euclidean space), if K is a symmetric function on $\Omega \times \Omega$ such that for some pair of conjugate indices $p, q, 1 < q \le 2 \le p < \infty$,

$$[Au](x) = \int_{\Omega} K(x, t)u(t) dt,$$

defines a completely continuous operator A from $L^{q}(\Omega)$ to $L^{p}(\Omega)$, which is positive definite in the sense that

$$\int_{\Omega} \int_{\Omega} K(x, t)u(x)u(t) dx dt > 0, \qquad u \in L^{q}(\Omega) \setminus \{0\},$$

and if in addition to (1), F satisfies the appropriate polynomial growth inequality so that the mapping

$$y(x) \to y(x)F(y^2(x), x)$$

^{*} This research was partially supported by NSF Grant GP 4323.