On the Pointwise Behavior of Iterates of a Self-adjoint Operator

DONALD ORNSTEIN

Communicated by GIAN-CARLO ROTA

The question with which this paper is concerned is the following: Let T be a self-adjoint, linear operator on L_1 of a measure space of finite measure. Assume that $||T||_1 \leq 1$. Then if f is in L_1 does $T^{2n}f$ converge pointwise a.e.?

A case of special interest arises in the following way: Let T_1 and T_2 be operators defined by taking the conditional expectation with respect to σ fields θ_1 and θ_2 . (Then $T_1T_2T_1=T$ is selfadjoint and $T^n=(T_1T_2)^nT_1$.) One would then expect $(T_1T_2)^nT_1f$ and $(T_2T_1)^nf$ to converge pointwise a.e. (and that the limit would equal the conditional expectation with respect to $\theta_1 \wedge \theta_2$).

Burkholder and Chow [1] showed that the answer to these questions is yes if f is in L_2 . Rota [2] and E. M. Stein [3] showed the result to be true for functions in L_p , p > 1. (Rota's method gives something much more general.) In this paper we will show that the answer is no, even in the special case mentioned above, if f is only assumed to be in L_1 .

Theorem. Let I be the unit interval. Then there are 2σ -fields, θ_1 and θ_2 consisting of Borel sets in I, and a function f, defined on I, $f \geq 0$, $\int f \leq \frac{1}{8}$. If T_1 and T_2 are the operators: conditional expectation with respect to θ_1 and θ_2 respectively, then $\overline{\lim}_{n\to\infty} (T_1T_2)^n f \geq 1$ a.e. on I.

Remark 1. The above theorem implies that $(T_1T_2)^n f$ does not converge pointwise a.e..

Remark 2. It will follow easily from the construction that $(T_1T_2T_1)^{2n}g$ does not converge pointwise a.e. for some g in L_1 .

Definition. By an (X, r, s) system we will mean the following: X is a measure space of finite measure, r a finite collection of disjoint subsets of X whose union is X, s a finite collection of disjoint subsets of X (whose union is not X).

r will give rise to an operator, R; conditional expectation with respect to r. s will give rise to an operator, S as follows; S will be the identity on functions whose support is disjoint from $\bigcup s$ and for functions with support in $\bigcup s$, S will be conditional expectation with respect to s.

We will say that (X, r, s) is ergodic if for any function g, $(RS)^n g$ tends to a constant.