An Operator Valued Function Space Integral and a Related Integral Equation

R. H. CAMERON & D. A. STORVICK¹

Communicated by Eberhard Hopf

§0. Introduction. Let us begin by considering for positive values of λ ,

$$(0.1) (I_{\lambda}(F)\psi)(\xi) \equiv \int_{G_{0}[a,b]} F(\lambda^{-1/2}x + \xi)\psi(\lambda^{-1/2}x(b) + \xi) dx,$$

where $C_0[a, b] = \{x(\cdot) \mid x(a) = 0, x(t) \text{ continuous on } [a, b]\}$, and F is a real or complex valued functional defined for all continuous functions on [a, b] and ψ is a real or complex valued function defined almost everywhere on $(-\infty, \infty)$ and ξ is a real number; and the λ , F, ψ , ξ are so chosen that the above Wiener integral exists. Now suppose that for a certain choice of the λ , F, ψ the integral (0.1) exists for all (or almost all) values of ξ in a set S of real numbers. Then

$$(0.2) I_{\lambda}(F)\psi$$

denotes the function which maps ξ into $(I_{\lambda}(F)\psi)(\xi)$ for almost all values of ξ in S. Again, suppose that for a certain choice of λ , F, the function (0.2) exists for ψ in a class of functions $\mathfrak D$ and belongs to a class of functions $\mathfrak E$. Then the operator

$$(0.3) I_{\lambda}(F)$$

maps $\mathfrak D$ into $\mathfrak E$. In what follows, $\mathfrak D$ and $\mathfrak E$ will usually be $L_2(-\infty,\infty)$, so $I_{\lambda}(F)$ will usually be an operator that maps the Hilbert space L_2 into L_2 . It can therefore be considered to be an operator valued function space integral. We shall be particularly interested in extending the definitions of (0.1), (0.2), (0.3) to the case where λ is not real, and in particular, to the case where λ is a pure imaginary number. Before doing so, however, we mention that if

(0.4)
$$F(x) = \exp\left\{\int_a^t \theta(s, x(s)) ds\right\}$$

¹ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR 381-66.