Fuchsian Groups of Convergence Type and Poincaré Series of Dimension — 2

K. V. RAJESWARA RAO¹

Communicated by Maurice Heins

§1. Introduction. Throughout Γ stands for a group of Möbius transformations acting discontinuously on the unit disc U of the complex plane. We assume that Γ acts freely on U, i.e., that Γ contains no elliptic transformations. The principal object of this paper is to study certain aspects of Poincaré theta series of dimension -2 associated with Γ , namely, series of the form $\sum_{T \in \Gamma} f(Tz) \cdot T'(z)$. To this end, the natural assumption to make about Γ is that, for $z \in U$, $\sum_{T \in \Gamma} |T'(z)| < \infty$. Since

$$(1.1) (1 - |z|^2) \cdot |T'(z)| = 1 - |Tz|^2$$

the preceding inequality is equivalent to:

$$(1.2) \qquad \qquad \sum_{T=T} (1-|Tz|^2) < \infty.$$

We shall therefore assume, unless otherwise stated, that the group Γ is of convergence type, i.e. that (1.2) is valid for some, and hence all, z in U. It is well-known (Tsuji [13], p. 522) that this is equivalent to the condition that the Riemann surface U/Γ is hyperbolic.

Let us now briefly indicate the contents of the paper. In §2 we introduce the basic definitions. The next section contains one of our basic results (Theorem 1): for an analytic function f in the Hardy class $H^1(U)$, the theta series of dimension —2 exists. As an important application of this, we show (Th. 2) in Section 4 that the periods C(T) of a square integrable automorphic form of dimension —2 satisfy the following condition:

$$\sum_{T \in \Gamma} |C(T)| \cdot (1 - |Tz|^2) < \infty \quad \text{for all} \quad z \in U.$$

Section 5 contains some boundedness theorems for Poincaré series of dimension -2 analogous to those known for dimensions < -2 (cf. Ahlfors [1], Earle [6],

¹ Supported, in part, by the Purdue Research Foundation and the National Science Foundation.