Quasiconformal Mappings of Slit Domains in Three Space

F. W. GEHRING⁽¹⁾

1. Introduction. This paper is concerned with the following basic problem. Characterize those domains D in the n-dimensional Möbius space \bar{R}^n which can be mapped quasiconformally onto the open unit ball B^n . In [5] it was shown that to solve this problem one need only look at the part of D near its boundary ∂D . That is, a domain $D \subset \bar{R}^n$ is quasiconformally equivalent to B^n if and only if ∂D has a neighborhood U such that $D \cap U$ can be mapped quasiconformally into B^n with ∂D corresponding to ∂B^n .

When n=2, the Riemann mapping theorem leads to a geometric characterization which is more satisfactory than the condition implicit in the above mentioned result. Namely, a domain $D \subset \bar{R}^2$ can be mapped quasiconformally onto B^2 if and only if ∂D is a continuum which contains at least two points. Unfortunately when $n \geq 3$, one cannot decide whether or not a domain $D \subset \bar{R}^n$ is quasiconformally equivalent to B^n by looking only at ∂D . For example, let

$$D_1 = \{x : x_n > \min(r^{1/2}, 1)\}, \qquad D_2 = \{x : x_n < \min(r^{1/2}, 1)\},$$

where $r = (x_1^2 + \cdots + x_{n-1}^2)^{1/2}$. Then D_1 and D_2 are Jordan domains in \bar{R}^n with $\partial D_1 = \partial D_2$, a trivial modification of the proof of Theorem 10.3 in [6] yields a quasiconformal mapping of D_1 onto B^n , while the *n*-dimensional analogue of Theorem 10.1 in [6] shows that D_2 is not quasiconformally equivalent to B^n .

The trouble in the above example arises because the common boundary is quasiconformally good on one side but not on the other. This suggests that when $n \geq 3$, one should begin by considering domains $D \subset \bar{R}^n$ whose boundaries have only one side. In the present paper, we study those domains $D \subset \bar{R}^3$ whose complements lie in a set S, homeomorphic to ∂B^3 . This class, while extremely special, is a natural analogue in \bar{R}^3 of the important class of simply connected slit domains in \bar{R}^2 . We prove in Section 7 that each such domain D is quasiconformally equivalent to B^3 if and only if ∂D is a quasiconformal disk, that is, the image of the closed unit disk \bar{B}^2 under a quasiconformal mapping of \bar{R}^3 onto

⁽¹⁾ This research was supported in part by the National Science Foundation, Contract GP-7234.