A Perturbation Theorem for Invariant Manifolds and Hölder Continuity* ## ROBERT J. SACKER Communicated by Jürgen Moser 1. Introduction. We are concerned with a compact Riemannian manifold M_0 without boundary imbedded in a Riemannian manifold S, and a vector field V_0 defined in an S neighborhood of M_0 . We assume M_0 is an invariant manifold (integral manifold) for V_0 , *i.e.*, V_0 is tangential to M_0 at each point of M_0 . The problem is to find conditions under which the slightly perturbed vector field V will have an invariant manifold M near M_0 , and to predict the smoothness of M. It is well known that it does not suffice to merely require V to be close to V_0 . One must impose additional conditions on the vector field V_0 near M_0 . We give such conditions in terms of two invariantly defined functions $\underline{\lambda}(x)$ and $\bar{\beta}(x)$ defined on M_0 which are related to the type numbers of Lyapunov and are determined by the vector field V_0 solely in the neighborhood of the limit sets of the flow on M_0 . $\underline{\lambda}$ measures the rate of attraction of solutions in M_0 toward limit sets and $\bar{\beta}$ measures the rate of attraction toward M_0 of nearby solutions in the neighborhood of limit sets on M_0 . It will be shown that if (1) $\bar{\beta}(x) < 0$ and (2) $\bar{\beta}(x) < (q + \alpha)\underline{\lambda}(x), q \ge 1$ an integer, $0 < \alpha < 1$, then under a sufficiently small perturbation a slightly perturbed vector field V will possess an invariant manifold M which is a q-times differentiable manifold and the q^{th} derivative satisfies a Hölder condition with exponent α . The greater the attraction toward M_0 the more negative $\bar{\beta}$ will be and the greater the attraction of solutions in M_0 toward limit sets, the more negative $\underline{\lambda}$ will be. Thus any lack of smoothness is due to the presence of attracting limit sets on M_0 . In cases in which the limit sets are simple, e.g., singularities or limit cycles, one can check conditions (1) and (2) by comparing eigenvalues and Floquet exponents of the linearized equations (Example 7-4). If $\bar{\beta}(x) = \underline{\lambda}(x)$ for some $x = x_0$, then under a perturbation the manifold may roll up into a spiral at x_0 (Example 7-3). If $\bar{\beta}(x) < \underline{\lambda}(x)$ then by semicontinuity ^{*} This work was partially supported by U. S. Army Contract #DA-31-124-ARO-D-265