Lipschitz Classes and Fourier Coefficients

MASAKO & SHIN-ICHI IZUMI

Communicated by MARK KAC

1. Introduction.

1.1. Let f be an integrable function with period 2π and be even or odd and let

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx$$
 or $f(x) \sim \sum_{n=1}^{\infty} a_n \sin nx$.

We suppose

$$0 < \alpha \le 1$$
, $p \ge 1$ and $r \ge 1$.

The Lipschitz class Lip α is the space of all functions f satisfying the condition

$$(1.1) ||f||_{\alpha} \equiv \sup_{t>0,x} \left(\frac{|f(x+t)-f(x)|}{t^{\alpha}} \right) < \infty.$$

The space Λ (Zygmund class) is the space of all functions f satisfying the condition

$$||f||_1^* \equiv \sup_{t>0,x} \left(\frac{|f(x+t)-2f(x)+f(x-t)|}{t} \right) < \infty.$$

The Hardy-Littlewood class Lip (α, p) $(p < \infty)$ is the space of all functions f satisfying the condition

(1.2)
$$||f||_{\alpha,p} \equiv \sup_{t>0} \left(\int_0^{2\pi} \left| \frac{f(x+t) - f(x)}{t^{\alpha}} \right|^p dx \right)^{1/p} < \infty.$$

Recently, the space $\Lambda(\alpha, p, r)$ was defined by M. H. Taibleson and R. Askey as the set of all functions f satisfying the condition

$$(1.3) ||f||_{\alpha,p,r} \equiv \left(\int_0^1 \left(\int_0^{2\pi} \left| \frac{f(x+t) - 2f(x) + f(x-t)}{t^{\alpha}} \right|^p dx \right)^{r/p} \frac{dt}{t} \right)^{1/r} < \infty.$$

Then we can easily see that

$$\Lambda(\alpha, \infty, \infty) = \operatorname{Lip} \alpha \quad \text{for} \quad 0 < \alpha < 1,$$

$$\Lambda(1, \infty, \infty) = \Lambda,$$

$$\Lambda(\alpha, p, \infty) = \operatorname{Lip} (\alpha, p) \quad \text{for} \quad 0 < \alpha \leq 1 \quad \text{and} \quad 1 \leq p < \infty.$$

Journal of Mathematics and Mechanics, Vol. 18, No. 9 (1969).