Spline-Blended Surface Interpolation Through Curve Networks

WILLIAM J. GORDON

Communicated by Garrett Birkhoff

Abstract. The purpose of this paper is to describe and analyze the new family of methods for bivariate interpolation first reported in [12]. Although univariate spline functions play a major role in their construction, these bivariate interpolation functions are not tensor product splines. Indeed, the function space associated with this family of methods is infinite-dimensional. Whereas tensor product ("cross product") methods of interpolation such as de Boor's bicubic splines [8] and their generalizations (cf. Lemma 4) interpolate to discrete data at mesh-points, the methods described herein (cf. Theorem 1) interpolate to arbitrary continuous functions given along mesh-lines. These new methods do, however, include the familiar product methods as a special case. In [5], S. A. Coons described a class of bivariate interpolation schemes which have come to be known as "(polynomial) blending-function" methods (cf. also [4]). Since the methods described herein are extensions of the Coonstype methods in the same sense as two-endpoint spline interpolation (cf. Lemma 1) is an extension of two-endpoint (Hermite) polynomial interpolation, we shall refer to this new family of methods as spline-blended bivariate interpolation. Although the principal emphasis throughout the paper is on interpolation, in Section 5 we outline some related results concerned with bivariate approximation in the l_2 norm.

1. Introduction. Let Z = U(x, y) be any continuous surface defined over the rectangular domain $\mathfrak{R} = [a, b] \times [c, d]$ in the (x, y)-plane. Let $\pi : a = x_1 < x_2 < \cdots < x_N = b$ and $\pi' : c = y_1 < y_2 < \cdots < y_N = d$ be partitions of the intervals I = [a, b] and I' = [c, d], and consider the plane sections of U cut by the vertical planes $x = x_i$ and $y = y_i$

(1)
$$g_{i}(y) = U(x_{i}, y) \qquad (i \varepsilon \overline{1, N})$$

$$h_{i}(x) = U(x, y_{i}) \qquad (j \varepsilon \overline{1, N'});$$
931

Journal of Mathematics and Mechanics, Vol. 18, No. 10 (1969).