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Abstract. The purpose of this paper is to describe and analyze the new
family of methods for bivariate interpolation first reported in [12]. Although
univariate spline functions play a major role in their construction, these bi-
variate interpolation functions are not tensor product splines. Indeed, the
function space associated with this family of methods is infinite-dimensional.
Whereas tensor product (‘“‘cross product”) methods of interpolation such as
de Boor’s bicubic splines [8] and their generalizations (¢f. Lemma 4) interpolate
to discrete data at mesh-points, the methods desecribed herein (¢f. Theorem 1)
interpolate to arbitrary continuous functions given along mesh-lines. These
new methods do, however, include the familiar product methods as a special
case. In [5], S. A. Coons described a class of bivariate interpolation schemes
which have come to be known as ““(polynomial) blending-function” methods
(¢f. also [4]). Since the methods described herein are extensions of the Coons-
type methods in the same sense as two-endpoint spline interpolation (¢f. Lemma
1) is an extension of two-endpoint (Hermite) polynomial interpolation, we shall
refer to this new family of methods as spline-blended bivariate interpolation.
Although the principal emphasis throughout the paper is on interpolation, in
Section 5 we outline some related results concerned with bivariate approxima-
tion in the I, norm.

1. Introduction. Let Z = Uf(x, y) be any continuous surface defined over
the rectangular domain ® = [a, b] X [¢, d] in the (z, y)-plane. Let 7 : @ =
<2< <zy=bandw :c=y <y, < --+ < yy = d be partitions
of the intervals I = [a, b] and I’ = [¢, d], and consider the plane sections of U
cut by the vertical planes ¢ = z; and y = y;

1) g:(y) = Ulz: , v) (Gel, N)
hi@) = Uz, y)) (jel, N');
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