A Homotopy Group of Algebraic Arcs Found by Smoothed Approximations

PAUL CHERENACK

Communicated by Andrew Wallace

Introduction. The paper develops the notion of homotopy group on a real algebraic variety V where the paths and homotopy satisfy certain analytic conditions.

Definition 1. $f \in T(V, P) \Leftrightarrow f : I \to V$ is continuous and $\exists t_i$, partition numbers of f where $0 = t_0 < t_1 < \cdots < t_n = 1$ such that

- 1) $f \mid (t_i, t_{i+1}) \to V$ is a non-singular algebraic path (open) or
- 2) $f \mid [t_i, t_{i+1}] \rightarrow \{P\}$ where $P \in V$
- 3) f(t) = P if $t = t_i$ for some i
- 4) $f \mid \mathbb{C} S(V)$, the singular locus of V (unless f = P).

 $f \in T(V, P)$ is non-reversing if there are never t, t', t'' such that

 $f \mid [t, t'] \rightarrow V$ is the same as path $f \mid [t', t'']$ except traversed in the opposite direction.

Definition 2. Let $H: I \times I \to V$ be analytic, $H(0 \times I)$, $H(I \times I)$ be edges of imH as in case 1 or 2 of Definition 1, nonsingular (except possibly at P) on \overline{imH} (the algebraic closure of imH, imH a 2-dimensional subset of a 2-dimensional algebraic variety) in case 1. If imH contains no irreducible arcs α singular on imH containing a point R singular on $\overline{\alpha}$ (a 0/1 dimensional singularity), then imH will be called an algebraic square.

Definition 3. A P-chained algebraic squares S with partition numbers $\{t_i\}$ where $0 = t_0 < t_1 < t_2 < \cdots < t_n = 1$ and special partition numbers $\{t_{i_k}\}$ where $t_{i_k} \in \{t_i\}$ is a square defined by a continuous map H

$$H:I\times I\to V$$

such that

- a) If t_i is not a special partition number, then
- 1) α) There are numbers $0 = s_0 < \cdots < s_n = 1$ such that

$$H \mid [s_i, s_{i+1}] \times [t_i, t_{i+1}] \rightarrow V$$

1101

Journal of Mathematics and Mechanics, Vol. 18, No. 11 (1969).