A Generalization of the Morse Index Theorem to a Class of Degenerate Elliptic Operators

L. M. SIBNER

Communicated by F. W. Gehring

In a recent paper, J. J. Kohn and L. Nirenberg show that some of the fundamental properties of strongly elliptic operators also hold for a class of degenerate elliptic operators (see [1]). A simple example which is typical of some of those they consider is the second order operator in the plane having principal part

$$y^2 \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

which is elliptic except on the real axis.

The purpose of this paper is to show that the classical Sturm-Liouville theory is valid for problems satisfying the Kohn-Nirenberg conditions. In particular, the proof of the Morse Index Theorem for strongly elliptic operators due to Smale (see [2]) can be modified for an appropriate class of degenerate problems.

We consider vector valued functions $u = (u_1, \dots, u_p)$ defined in the closure of a bounded open set M in R^n having smooth boundary. Let B be the subspace of $\mathfrak{C}^{\infty}(\overline{M})$ consisting of vector-valued functions which vanish up to order k-1 on ∂M . We will be concerned with linear differential operators L of order 2k defined on B. For every u, $v \in B$, the L_2 inner product (Lu, v) defines a bilinear form Q(u, v) in the derivatives of u and v up to order k; *i.e.*,

$$(Lu, v) = Q(u, v) = \int_{M} \sum_{\substack{i,j \mid \alpha | \leq k \\ |\beta| \leq k}} a_{ij}^{\alpha\beta} D^{\alpha} u^{i} \overline{D^{\beta} v^{i}} dx$$

with smooth matrix valued coefficients. L is called *self-adjoint* if Q(u, v) is Hermitian.

The Morse Index I(L) is then defined as the dimension of the largest subspace of B on which the quadratic form Q(u, u) is Hermitian negative definite.

A smooth deformation of M is a family of domains M_t , $0 \le t \le 1$, such that $M_0 = M$ and M_t is properly contained in M_s for t > s. Moreover, the boundary of M_t depends on t in a smooth way. Such a deformation is of ϵ -type if the measure of M_1 is smaller than ϵ . We will always assume that for every $\epsilon > 0$,