Representation of Semi-Groups of Nonlinear Nonexpansive Transformations in Banach Spaces

G. F. WEBB

Communicated by R. Phillips

Let S be a weakly complete Banach space with conjugate space S^* separable. A semi-group of nonlinear nonexpansive transformations on S is a function T from $[0, \infty)$ to the set of transformations on S such that

- (1) T(x + y) = T(x)T(y) for all $x, y \ge 0$,
- (2) T(x) is nonexpansive for each $x \ge 0$, i.e., if $p, q \in S$ then $||T(x)p T(x)q|| \le ||p q||$,
- (3) if $p \in S$ and $g_p(x) = T(x)p$ for each $x \ge 0$, then g_p is continuous and $g_p(0) = p$.

If there is a point q in S such that $g_q^{\prime +}(0)$ exists, then the infinitesimal generator of T is defined to be the function A such that $Ap = g_p^{\prime +}(0)$ for all p in S for which $g_p^{\prime +}(0)$ exists.

If for each $x \ge 0$ it is required that T(x) is a linear transformation on S then T is a semi-group of linear nonexpansive transformations on S and it can be shown (see [4] or [12]) that the infinitesimal generator A of T is densely defined, for each $\epsilon > 0$ $(I - \epsilon A)^{-1}$ exists and has domain S, and T may be represented as follows:

$$T(\epsilon)p = \lim_{n \to \infty} (I - (\epsilon/n)A)^{-n}p$$
 for $p \in S$, $\epsilon \ge 0$.

If T is a semi-group of nonlinear nonexpansive transformations on S, J. W. Neuberger [9] has shown the following theorem:

If x > 0 and $A_x = (1/x)[T(x) - I]$, then for each $\epsilon \ge 0$ $(I - \epsilon A_x)^{-1}$ exists, has domain S, and is nonexpansive. Further, if there is a dense subset D of S

Presented to the Society, August 30, 1968. This paper is based on the author's dissertation prepared under the direction of Professor J. W. Neuberger at Emory University.