A Completeness Theorem on the Group of Baire Equivalences

E. R. LORCH & HING TONG*

In a previous work [1], the first author considered the totality T of compact metric topologies τ on a base set E which determine the same group \mathfrak{G} of Baire equivalences. A Baire equivalence \mathfrak{g} is a bijective map which, along with its inverse map \mathfrak{g}^{-1} , maps Baire sets into Baire sets. If τ is one of the topologies in T, it is shown how to introduce a uniform topology \mathfrak{g} into the group of Baire equivalences. (Because of the group structure, there is also a right topology \mathfrak{g} , we shall concern ourselves only with the left topology). A principal result of [1] is that the uniform space \mathfrak{g} is complete. The purpose of the present note is to introduce a weaker topology \mathfrak{g} into the group of Baire equivalences and to establish once more the fact of completeness.

Let \mathfrak{e} denote the identity element in \mathfrak{G} . Let τ be a compact metrizable topology on \mathbf{E} . Let f_1 , \cdots , f_n be τ -continuous real-valued functions. For a fixed i, $1 \leq i \leq n$, consider sets of the type $\mathbf{M}_i(\alpha) = \{x : f_i(x) = \alpha\}$. We consider Baire equivalences \mathfrak{h} which permute these sets $\mathbf{M}_i(\alpha)$. Thus, in particular, if \mathfrak{h} maps $\mathbf{M}_i(\alpha)$ into $\mathbf{M}_i(\beta)$ the two sets have the same cardinality. Now consider the totality of Baire equivalences \mathfrak{h} which permute the sets $\mathbf{M}_i(\alpha)$ for each $i = 1, \dots, n$. This totality is a subgroup \mathfrak{F} of \mathfrak{G} which will be denoted by $\mathfrak{F}(\tau; f_1, \dots, f_n)$. We note that $\mathfrak{F}(\tau; f_1, \dots, f_n; f'_1, \dots, f'_m) = \mathfrak{F}(\tau; f_1, \dots, f_n) \cap \mathfrak{F}(\tau; f'_1, \dots, f'_m)$. If we vary the set $\{f_1, \dots, f_n\}$ in all possible ways we obtain a base of neighborhoods of \mathfrak{e} in \mathfrak{G} . The topology \mathfrak{F} is obtained by taking as a base of neighborhoods of \mathfrak{g} \mathfrak{e} \mathfrak{G} the sets $\mathfrak{g} \cdot \mathfrak{F}$ where \mathfrak{F} is any set in the base for \mathfrak{e} . (Similarly, the sets $\mathfrak{F} \cdot \mathfrak{g}$ define the topology \mathfrak{G}').

The topology 'G comes from a uniformity. The subsets $\bigcup_{\mathfrak{g}} (\mathfrak{g} \cdot \mathfrak{G} \times \mathfrak{g} \cdot \mathfrak{G})$ of $\mathfrak{G} \times \mathfrak{G}$ where $\mathfrak{g} \in \mathfrak{G}$ form a base of this uniformity. It is not difficult to see that the topology 'G is separated. In fact, if $\mathfrak{g} \neq \mathfrak{e}$ there exist x and y such that $y = \mathfrak{g} x \neq x$. Let f be τ -continuous and such that f(x) = f(z) has a unique solution z = x whereas f(y) = f(z) has at least two solutions z. Then $\mathfrak{g} \notin \mathfrak{G}(\tau; f)$. In order to establish this fact we have assumed that E possesses more than two points. We make this assumption in all that follows.

A generalized Cauchy sequence in \mathfrak{G} is a set $\{\mathfrak{g}_m\}$ indexed by a directed set M and having the property that given any neighborhood $\mathfrak{F} = \mathfrak{F}(\tau; f_1, \dots, f_n)$

^{*} These results were obtained with the help of grants from the National Science Foundation