Positive Solutions of Some Nonlinear Eigenvalue Problems*

HERBERT B. KELLER

California Institute of Technology

Communicated by JÜRGEN MOSER

1. Introduction. We consider nonlinear eigenvalue problems of the form

(1.1a)
$$Lu + \lambda r(x)u = f(\lambda, x, u), \qquad x \in D;$$

(1.1b)
$$Bu \equiv \beta_0(x)u + \beta_1(x)\frac{\partial u}{\partial v} = 0, \quad x \in \partial D;$$

where L is a second order self-adjoint elliptic operator. We seek positive solutions, u(x) > 0 on D, and investigate the set of values of λ for which such solutions exist. The nonlinearity is required to satisfy, for appropriate values of λ ,

$$f(\lambda, x, 0) \leq 0$$
 on D .

The case $f(\lambda, x, 0) \equiv 0$, which we include, has the trivial solution, $u(x) \equiv 0$, for all values of λ and thus leads to a bifurcation problem. Under various monotonicity conditions on $f(\lambda, x, z)$ and $f_z(\lambda, x, z)$ for appropriate λ and z we prove uniqueness of positive solutions, existence and non-existence of positive solutions, characterize the bifurcation points and show that positive solutions increase with λ and possibly other parameters. Closely related results are contained in [7] and [8].

The second order operator L is uniformly elliptic self-adjoint, say:

(1.2a)
$$L\varphi \equiv \sum_{i,j=1}^{m} \partial_{i} a_{ij}(x) \partial_{i} \varphi - a_{0}(x) \varphi;$$

with

(1.2b)
$$\sum_{i,j=1}^{m} a_{i,j}(x)\xi_{i}\xi_{j} \ge a^{2} \sum_{i=1}^{m} \xi_{i}^{2}, \quad a_{0}(x) \ge 0, \quad r(x) > 0 \quad \text{on} \quad \bar{D}.$$

The conormal derivative $\partial/\partial\nu$ is

^{*} This work was supported under Contract DAHC 04-68-0006 with the U. S. Army Research Office (Durham).