On the Asymptotic Solution of a Nonlinear Dirichlet Problem

M. S. BERGER & L. E. FRAENKEL

Communicated by J. B. Keller

In this article we study the behaviour of the positive solution of the Dirichlet problem

(1)
$$\begin{cases} K_{\epsilon}u \equiv \epsilon^{2} \triangle u + u - g^{2}(x)u^{3} = 0 & \text{in } \Omega, \\ u \mid_{\partial\Omega} = 0. \end{cases}$$

Here (and throughout the paper, except where the contrary is explicitly stated) Ω is a bounded (open) domain in \mathbb{R}^N , $N \leq 3$, with smooth boundary $\partial\Omega$ of class C^* ; and g(x) is a smooth (C^*) function, strictly positive on Ω . The principal results are as follows.

- (A) For sufficiently small values of ϵ , the problem (1) has a unique smooth positive solution $u(x, \epsilon)$ which tends to 1/g(x) as $\epsilon \to 0$, outside a narrow boundary layer of width $O(\epsilon)$ concentrated near $\partial\Omega$.
- (B) We construct an approximate solution $U_M(x, \epsilon) = \sum_0^M \epsilon^m u_m(x, \epsilon)$ such that $u(x, \epsilon) U_M(x, \epsilon)$ is $O(\epsilon^{M+1})$ uniformly on $\bar{\Omega}$ (for any integer M).
- (C) The positive solution $u(x, \epsilon)$ can be uniquely continued as a continuous function of ϵ to the open interval $(0, \lambda_1^{-1/2})$, and no further. (Here λ_1 denotes the lowest eigenvalue of Δ in Ω , subject to the null boundary condition, and is the value of ϵ^{-2} at which the positive solution of (1) bifurcates from the trivial solution $u \equiv 0$.) This result on the existence and continuity of $u(x, \epsilon)$ is not restricted to three space dimensions $(N \leq 3)$, nor to infinitely smooth domains and functions g.

1. Introduction

1.1. The results presented here are of interest in several respects. First, from the abstract point of view, the lower-order term $u - g^2(x)u^3$ in (1) alternates in sign for u greater or less than 1/g(x), and so (1) is not immediately amenable to a general abstract study. As a consequence, the solution $u(x, \epsilon)$ studied here differs considerably, for ϵ sufficiently small, from the solutions with small norm that occur near points of bifurcation from the trivial solution $u \equiv 0$.