Semi-Groups of Partial Isometries

L. J. WALLEN

Communicated by P. R. Halmos

§1. Preliminaries and notation. The purpose of this paper is to give a representation theorem for some one-parameter semi-groups of partial isometries on a Hilbert space H. Our model is the semi-group $\{S_t\}$ defined on $L_2(0, 1)$ by

$$S_t = 0$$
 for $t \ge 1$

and

$$S_t f(x) = \begin{cases} 0 & \text{for } 0 \le x \le t \\ f(x-t) & \text{for } t < x \le 1. \end{cases}$$

 $\{S_t\}$ is related to the classical Volterra integration operation J by $J = \int_0^1 S_t dt$. Our representation theorem tells when a semi-group is a direct sum of $\{S_t\}$'s.

Theorem. Let $\{W_t\}$ be a strongly continuous semi-group on H satisfying

- (a) each W_{\star} is a partial isometry,
- (b) $W_1 = 0$ and $W_t \neq 0$ for $0 \leq t < 1$, and
- (c) the von Neumann algebra \mathfrak{A} generated by the operators W_t , $0 \leq t$, is a factor.

Then $\{W_{\iota}\}$ is unitarily equivalent to a direct sum of n copies (n may be infinite) of $\{S_{\iota}\}$.

An immediate consequence is the

Corollary. $\{S_t\}$ is characterized up to unitary equivalence by (a), (b) and irreducibility.

The main tool in our proof is the following consequence of [1]. Let W be a partial isometry all of whose powers are again partial isometries and which is nilpotent of index n. Then $H = H_{n_1} \bigoplus H_{n_2} \bigoplus \cdots \bigoplus H_{n_k}$, $1 \le n_1 < n_2 < \cdots < n_k = n$, each H_p ($p = \text{some } n_i$) reduces W, and $W \mid H_p$ is unitarily equivalent to an operator (defined on the p-fold direct sum of a Hilbert space with itself) having the $p \times p$ matrix representation