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1. Introduction. The Navier-Stokes equations governing viscous incom-
pressible flow are

du; + u;du; = —ad.p + 11_—3 Au;,

(1.1)
a,‘u,' = 0,

where 9; = 9/dz; , 9, = 8/9, , and repeated indices denote summation. The
functions u; , 7 = 1, 2, 3, are the components of the velocity field in rectilinear
coordinates, and p denotes the pressure. The quantities in (1.1) are non-dimen-
sional. The parameter R is called the Reynolds number for the flow and is a
dimensionless quantity.

Let D be a bounded region of R?® with boundary dD. Due to the viscosity, the
fluid must adhere to the walls of D. If the boundaries are moving at a constant,
tangential rate (such as a sphere or cylinder rotating about its axis of symmetry)
then the fluid must move with the walls at the boundary. Let @ be a stationary
(time independent) solution of (1.1) satisfying non-homogeneous boundary
conditions. An interesting question, and one which has occupied an important
position in the research of experimentalists and applied mathematicians, is that
of the stability of the flow %. That is, if the flow is disturbed slightly, do the
perturbations grow or decay? If the solution of (1.1) is written in the form
u = 17 -+ v, where v denotes the perturbed flow, then we derive for v the system
of equations

i T 1
(1.2) dw; + v; dp; + @; d; + v; 9,8, = —9.p + R Av;,

6,»1).- = O, V; = 0 on 6D-
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