Capacity and Compact Imbeddings

R. A. ADAMS*

Communicated by G. Birkhoff

1. Introduction. In this paper we give a condition on an open set G in Euclidean n-space E_n , which is necessary and sufficient for the compactness of the Sobolev space imbedding

$$(1) W_0^{m,p}(G) \to L^p(G).$$

This condition is formulated in terms of a certain definition of capacity of a closed subset of a cube in E_n which is due in the case p=2 to Kondrat'ev [8] and which for sets of small capacity is equivalent, in the case m=1, to the classical capacity of Wiener. A different generalization of the Wiener capacity (p=2) is used by Maz'ja [9] to study certain compact imbedding problems.

In Section 2 we define our capacity and prove the main theorem characterizing in terms of this capacity the domains G for which (1) is compact. In Section 3 we formulate a geometric condition on G which guarantees the compactness of (1). This condition is weaker than all similar geometric conditions for compactness of Sobolev imbeddings formulated by C. Clark [6] and the author [1–5].

2. The $C_n^{m,p}$ Capacity. Let H be an n-dimensional cube of side h in E_n . It will be understood that any such cube referred to throughout this paper has its faces parallel to the coordinate planes. Let E be a closed subset of H; let $1 \le p < \infty$ and let m be a positive integer. We denote by $C^{\infty}(H, E)$ the class of all infinitely differentiable functions (real or complex valued) on H which vanish identically in a neighbourhood of E. We define the functional

$$I_{n,H}^{m,p}(u) = \sum_{1 \le |\alpha| \le m} h^{|\alpha| p} \int_{H} |D^{\alpha}u(x)|^{p} dx$$

where, as usual, $\alpha = (\alpha_1, \dots, \alpha_n)$ is an *n*-tuple of non-negative integers; $|\alpha| = \alpha_1 + \dots + \alpha_n$; $D^{\alpha} = D_1^{\alpha_1} + \dots + D_n^{\alpha_n}$ where $D_i = \partial/\partial x_i$. Denoting by $||u||_{0,p,A}$ the $L^p(A)$ norm of u given by

$$||u||_{0,p,A}^p = \int_A |u(x)|^p dx,$$

^{*} Research sponsored by Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force under Grant Nr. AFOSR-69-1531 and also by the National Research Council of Canada under Operating Grant Nr. A-3973.