Invariant Subspaces and Analytic Continuation in Several Variables

P. R. AHERN¹ & D. N. CLARK²

Communicated by Andrew Gleason

For $N \ge 1$ let U^N denote the unit polydisc in N complex variables and $H^2(U^N)$ the usual Hardy class of holomorphic functions in U^N . A closed subspace M of $H^2(U^N)$ is said to be invariant if it is invariant under multiplication by polynomials. If N = 1, then any invariant subspace is of the form $f_0H^2(U^1)$ where f_0 is an inner function [2], and the following conditions are equivalent for a point $\lambda \in \partial U^1$.

- (a) f_0 has an analytic continuation into a neighborhood of λ .
- (b) $I \bar{\lambda}T$ is invertible, where $Tf = P_{M^{\perp}}(zf)$ for $f \in M^{\perp} = H^2 \bigoplus f_0H^2$.
- (c) Every function in M^{\perp} has an analytic continuation into a neighborhood of λ .

The equivalence of (a) and (b) was proved by Moeller [4]. Akutowicz and Carleson proved the equivalence of (a) and (c) in case f_0 is a Blaschke product [1]. Helson, [3], extended the result to general f_0 and gave a new proof of the equivalence of all three conditions.

For N > 1 there is, in general, no inner function associated with an invariant subspace. In I we discuss the general problem of analytic continuation of functions in M^{\perp} , and the relation between the analogues of (b) and (c) for N > 1. In II we consider the case where $M = f_0H^2(U^N)$ where f_0 is inner. In III we consider another special kind of invariant subspace and obtain a theorem of Akutowicz-Carleson type. This class of subspaces includes, in particular, all invariant subspaces of finite codimension, as we show in IV.

I. In what follows M will denote an invariant subspace of $H^2 = H^2(U^N)$ and M^{\perp} will denote its orthogonal complement in H^2 . We will consider the

¹ The first author was partially supported by NSF Grant GP-6764.

² Throughout most of this work, the second author held an NRC-ONR Postdoctoral Research Associateship at the University of Wisconsin.