Nonlinear Sturm-Liouville Eigenvalue Problems and Topological Degree*

MICHAEL G. CRANDALL & PAUL H. RABINOWITZ

Communicated by J. Moser

§1. In this paper, we study boundary value problems of the form

(1.1)
$$\begin{cases} Lu = \lambda(a(x) - f(x, u, u'))u, & 0 < x < 1, \\ \alpha_0 u(0) + \beta_0 u'(0) = 0, & \alpha_1 u(1) + \beta_1 u'(1) = 0, \end{cases}$$

where L is the linear Sturm-Liouville operator

$$(1.2) Lu = -(pu')' + qu.$$

We are interested in the question of for what values of $\lambda > 0$ there exist non-trivial solutions of (1.1).

Assuming

$$(f_1)$$
 f is continuous on $[0, 1] \times \mathbb{R}^2$ and $f(x, 0, 0) = 0$ for $0 \le x \le 1$,

and linearizing (1.1) about u = 0 (with λ held fixed) yields the linear Sturm-Liouville problem

(1.3)
$$\begin{cases} Lv = \lambda av, \\ v \in B.C.. \end{cases}$$

where B.C. denotes the set of once continuously differentiable functions which satisfy the boundary conditions of (1.1). Assuming (1.3) is a regular Sturm-Liouville problem, there is a sequence $\lambda_1 < \lambda_2 < \lambda_3 < \cdots$ of simple eigenvalues and a corresponding sequence v_1 , v_2 , v_3 , \cdots of (normalized) eigenfunctions such that the pairs (λ, v) satisfying (1.3) are of the form $(\lambda_k, \alpha v_k)$. The eigenfunction v_k is characterized by the fact that it has exactly k-1 simple zeros (nodes) on (0, 1) (see e.g. [1]).

^{*} This research is supported in part by the U. S. Air Force and the National Science Foundation under contracts AF(49)1345 and GP 8857.