On the Commutativity of Homotopy Groups

GERALD J. PORTER*

Communicated by Andrew Wallace

Let [X, Y] denote the set of based homotopy classes of continuous maps from X to Y. We assume all spaces have base points and use * to denote both the base point and the constant map. The reduced suspension of X is denoted by ΣX and the loop space of X by ΩX . All spaces are assumed to be connected.

The one point union, $X \vee Y$, is the subset of $X \times Y$ consisting of points with at least one coordinate equal to the base point. The folding map, $\nabla \colon X \vee X \to X$ is defined by $\nabla(x,*) = \nabla(*,x) = x$. X is called an H-space if ∇ can be extended to $X \times X$. Such an extension is called a multiplication on X. Dually Y is called an H'-space if there is $\varphi \colon Y \to Y \vee Y$ such that φ followed by inclusion into the product is homotopic to the diagonal, $\Delta \colon Y \to Y \times Y$. In this case φ is called a comultiplication. Composition of loops gives ΩX an H-space structure and the "pinching map" gives ΣY an H'-space structure. These structures are taken as canonical.

Since $[\Sigma X, Y] \approx [X, \Omega Y]$ it is easily seen that $[\Sigma X, Y]$ is an abelian group if ΩY is homotopy-abelian and dually $[X, \Omega Y]$ is an abelian group if ΣX is homotopy-abelian. We show that the first result holds if ΣX is replaced by an arbitrary H'-space and dually the second result holds if ΩY is replaced by an arbitrary H-space.

Theorem. [X, Y] is an abelian group if either

- (a) X is an H'-space and ΩY is homotopy abelian, or
- (b) Y is an H-space and ΣX is homotopy abelian.

Proof. Let $e: \Sigma\Omega X \to X$ and $\lambda: Y \to \Omega \Sigma Y$ be the adjoints of $1_{\Omega X}$ and $1_{\Sigma Y}$ respectively. If X is an H'-space, $e^*: [X, Y] \to [\Sigma\Omega X, Y]$ is one-one. Dually, if Y is an H-space, $\lambda_*: [X, Y] \to [X, \Omega \Sigma Y]$ is one-one. In both cases the range is an abelian group. To prove the theorem it therefore suffices to show that in case (a), e^* is a homomorphism, and in case (b), λ_* is a homomorphism.

We first prove (a). Let $\bar{\varphi}: X \to X \vee X$ and $\varphi: \Sigma \Omega X \to \Sigma \Omega X \vee \Sigma \Omega X$ be the comultiplications in X and $\Sigma \Omega X$ respectively. e^* is a homomorphism if and only

^{*} Supported in part by NSF-GP-12579.