Semi-Groups and a Class of Singular Perturbation Problems*

ANDREW Y. SCHOENE

Communicated by R. Phillips

Introduction. We assume that A_1 and A_2 are infinitesimal generators of strongly continuous (class (C_0)) semi-groups of bounded linear operators on a Banach space B, and P is a 2×2 matrix with real or complex entries. It follows that $G = \text{diagonal } (A_i) + P$ is the infinitesimal generator of a class (C_0) semi-group on $B \times B$ for which we obtain an explicit representation as a Bochner integral with a Bessel function kernel.

In Section 2 we specialize to

$$G^{\epsilon} = rac{1}{\epsilon^{1/2}} egin{bmatrix} A & 0 \ 0 & -A \end{bmatrix} + rac{1}{\epsilon} egin{bmatrix} -a & a \ a & -a \end{bmatrix}$$

with A the infinitesimal generator of a group of class (C_0) , and a > 0. Each component of the solution of the abstract Cauchy problem $d\bar{u}/dt = G^{\epsilon}\bar{u}$ satisfies the abstract telegraph equation $\epsilon u_{tt} + 2au_t = A^2u$: we use semi-group theory to show that this solution converges as $\epsilon \to 0$ to the solution of $2au_t = A^2u$ and to obtain a rate of convergence. This is done as follows: the resolvent of G^{ϵ} , $(\lambda I - G^{\epsilon})^{-1}$ is shown to converge at a certain rate to the resolvent of

$$G = \frac{1}{4a} \begin{bmatrix} A^2 & A^2 \\ A^2 & A^2 \end{bmatrix}.$$

The rate of convergence of the resolvents is translated into a rate of convergence of the semi-groups $\exp(G^t)$ to the semi-group $\exp(Gt)$ (Theorem 1) via a modified version of the Trotter-Kato Theorem. This in turn implies that the solutions converge (Theorem 2).

In Section 3 we assume A is a self-adjoint operator on a Hilbert space H; iG^{ϵ} is then the generator of a unitary group of class (C_0) . The corresponding second order equation, $\epsilon u_{tt} + 2aiu_t + A^2u$ is a transformed version of the Klein-Gordon

^{*} This research was wholly supported by NSF Grant GP-8856 and based on work submitted in partial fulfillment of the requirements for the PH.D. degree at the University of New Mexico.