A Vietoris-Begle Theorem for Submersions

DONALD R. SHORT* & J. WOLFGANG SMITH**

Communicated by S. S. Chern

1. Introduction. Among existing versions of the Vietoris-Begle Mapping Theorem the sheaf theoretic version, as given in G. E. Bredon's *Sheaf Theory* [1], is particularly germane to the considerations of the present paper. By a slight restriction of generality this result may be stated in the following form.

Vietoris-Begle Theorem. Let X be completely paracompact, $f: X \to Y$ a closed surjective map and \mathfrak{A} a sheaf of modules on Y. For all $y \in Y$ let $f^{-1}(y)$ be connected and let $H^{i}(f^{-1}(y); \mathfrak{A}_{y}) = 0$ for $0 < i \leq p$. The induced map

$$f^i: H^i(Y; \alpha) \to H^i(X; f^*\alpha)$$

is then an isomorphism for $0 \le i \le p$ and a monomorphism on dimension p+1. Here α_v denotes the stalk of α at y (considered as a sheaf on X), $f^*\alpha$ denotes the inverse image of α under f and H^i denotes sheaf cohomology. For basic facts, terminology and notations relating to sheaf theory we refer to Bredon's text.

The condition that f be closed is quite indispensable, unless it is assumed that f admits some other nice properties. In the present paper we shall be concerned with the case where X and Y are differentiable manifolds (of class C^* , let us say) and $f: X \to Y$ is a submersion, i.e. a C^* -map whose differential is everywhere surjective. More precisely, we shall take X to be open and paracompact but will allow Y to be an arbitrary (non-Hausdorff) C^* -manifold. One observes that a surjective submersion $f: X \to Y$ whose fibres $f^{-1}(y)$ are connected is now precisely equivalent to the natural projection of X onto the quotient space induced by a regular foliation on X (for basic facts pertaining to foliations we refer to Palais [3], Chapter I). The question is whether one obtains a Vietoris-Begle Theorem for this class of maps without the requirement that f be closed. The main result of this paper (Theorem 1) provides an affirmative answer. However, the resulting Vietoris-Begle Theorem is slightly weaker than its classical counterpart in two respects. Firstly, the acyclicity condition on the

^{*} Research supported by an NDEA Fellowship.

^{**} Supported by the National Science Foundation, Grant GP-11843.