On the Normalization of Haar Measures in the Representation Theory of Compact Semi-Simple Lie Groups ## GARTH WARNER 1. Introduction. Let \mathfrak{g} be a compact real semi-simple Lie algebra, \mathfrak{f} a Cartan subalgebra of \mathfrak{g} ; let \mathfrak{g}_{\circ} (respectively \mathfrak{f}_{\circ}) denote the complexification of \mathfrak{g} (respectively \mathfrak{f}_{\circ}); let $\Phi = \{\alpha\}$ denote the set of roots of the pair $(\mathfrak{g}_{\circ}, \mathfrak{f}_{\circ}), \Phi^{+}$ the positive roots (relative to some ordering of Φ); let W denote the Weyl group of the pair $(\mathfrak{g}_{\circ}, \mathfrak{f}_{\circ})$. Because \mathfrak{g} is compact, the Killing form B of \mathfrak{g} is negative definite; agreeing to use -B, we see, therefore, that \mathfrak{g} may be equipped with the structure of a Euclidean space in a natural way. It is well-known that the restriction of B to \mathfrak{f} is non-degenerate; therefore \mathfrak{f} may also be regarded as a Euclidean space in the obvious manner. Now suppose that G is a connected Lie group with Lie algebra \mathfrak{g} ; let J denote the analytic subgroup of G with Lie algebra \mathfrak{j} —then J is a maximal torus in G. The group G operates on \mathfrak{g} in the usual way (namely through the adjoint representation); we shall agree to write xX in place of $Ad(x)X(x \mathfrak{e} G, X \mathfrak{e} \mathfrak{g})$. Let $d_{\mathfrak{g}}(X)$ (respectively $d_{\mathfrak{g}}(H)$) denote the canonical element of volume on \mathfrak{g} (respectively \mathfrak{g}) as measured by -B; let $d_{\mathfrak{g}}(x)$ denote normalized Haar measure on G (hence $\int_{G} d_{\mathfrak{g}}(x) = 1$); let π denote the polynomial function on \mathfrak{g} , which is defined by the requirement $\pi(H) = \prod_{\alpha>0} \alpha(H)(H \mathfrak{e} \mathfrak{g}_{\mathfrak{g}})$ —then, according to Harish-Chandra [1, p. 105], there exists a positive constant vol G0 such that, for all continuous functions G0 or G1 with compact support, we have $$\int_{\mathfrak{g}} f(X) \ d_{\mathfrak{g}}(X) = \operatorname{vol}(G) \int_{\dot{\mathfrak{g}}} \left| \pi(H) \right|^{2} d_{\dot{\mathfrak{g}}}(H) \int_{G} f(xX) \ d_{G}(x).$$ The objective of the present note is to compute vol (G). Let r denote the cardinality of the set Φ^+ , [W] the order of the Weyl group W; let (\cdot, \cdot) denote the usual scalar product on the real span (in the dual of j_o) of the elements α in Φ ; let ρ be one-half the sum of the positive roots (i.e. let $\rho = 2^{-1} \sum_{\alpha>0} \alpha$)—then it turns out that vol (G) = $$(2\pi)^r/([W] \prod_{\alpha>0} (\rho, \alpha))$$ $(\pi = 3.14 \cdots).$ 499 Indiana University Mathematics Journal, Vol. 20, No. 6 (1970).