The Square-integrability of Operator-valued Functions with Respect to a Non-negative Operator-valued Measure and The Kolmogorov Isomorphism Theorem*

V. MANDREKAR & H. SALEHI

Communicated by M. Rosenblatt

1. Introduction. Let 30 and 36 be two separable Hilbert spaces, and 36 be a δ -ring of subsets of a space Ω (a δ -ring is a ring closed under countable intersection). Let M be a countably additive function defined on 36 with values in the class T(30, 30) of all non-negative definite compact operators of finite trace on 30 to 30. In the case 30 and 36 are the Euclidean spaces R^q and R^p ($1 \leq p, q < \infty$) respectively, the integral

is defined in such a way that the space $L_{2,M}$ of functions with values linear operators on R^a into R^p and square integrable with respect to M, *i.e.* the space

(1.2)
$$L_{2,M} = \left\{ \Phi : \text{trace } \int_{\Omega} \Phi \ dM \ \Phi^* \text{ finite} \right\}$$

is a complete inner product space ([21]) under the norm

(1.3)
$$||\Phi||_{M} = \operatorname{trace} \int_{\Omega} \Phi \, dM \, \Phi^{*}.$$

For the special case p = q = 1, the completeness of $L_{2,M}$ is the core of the celebrated Riesz-Fisher Theorem.

The importance of the completeness of $L_{2,M}$ along with the denseness of the simple functions in it in connection with multivariate prediction theory of

^{*} This research was partially supported by NSF GP-8614 and NSF GP-11626.