Distributional Boundary Values of Functions Analytic in Tubular Radial Domains

RICHARD D. CARMICHAEL

Communicated by G. Temple

I. Introduction. Tillmann [1] has characterized functions f(z) which are analytic in an octant $G_{\delta} = \{z: \delta_i \text{ Im } (z_i) > 0, \delta = (\delta_1, \dots, \delta_n), \delta_i = \pm 1, j = 1, \dots, n\}$ and which have distributional boundary values in S', the space of tempered distributions. He has shown that such functions must satisfy the boundedness condition

(1)
$$|f(z)| \leq M \prod_{j=1}^{n} (1 + |z_{j}|^{2})^{m_{j}} |y_{j}|^{-1/2 - k_{j}},$$

where $z = (z_1, \dots, z_n) = (x_1 + iy_1, \dots, x_n + iy_n)$ and M, m_i , k_i are constants. Working independently Vladimirov [2] characterized distributional boundary values in S' using the class of functions $K^+(K^-)$, which are functions that are analytic in tubular domain $T^+(T^-) = \mathbb{R}^{n+1} + i\Gamma^+(\Gamma^-)$, $\Gamma^+(\Gamma^-)$ being the future (past) light cone, and which satisfy a boundedness condition similar to (1). Vladimirov further showed that the S' boundary value of such a function f(z) must be the Fourier transform of an element $U \in S'$ which vanishes outside $\bar{\Gamma}^+(\bar{\Gamma}^-)$, and f(z) has the representation $f(z) = \langle U, e^{i(z,t)} \rangle$. Later Vladimirov [3] extended his results to the more general situation that f(z) be analytic in a tubular cone of which a tubular domain is an example. In [4] Vladimirov has summarized his results in their most general form.

Several authors have obtained distributional boundary value results in S' using a boundedness condition that is less restrictive than that of Tillmann and Vladimirov. Beltrami and Wohlers [5], [6], [7] have shown that if f(z), $z \in \mathbb{C}^1$, is analytic in Im (z) > 0, satisfies

(2)
$$|f(z)| \le C_{\delta}(1+|z|)^{p}$$
, Im $(z) \ge \delta > 0$,

and converges in the S' topology to a generalized function U, then $U \, \varepsilon \, S'$, U is the Fourier transform of an element $V \, \varepsilon \, S'$ which has support in $[0, \, \infty)$, and f(z) is the Laplace transform of V. The same result was obtained by DeJager [8] in a slightly more general setting. The extension to n dimensions has been