Boundaries for Natural Systems

R. M. BROOKS*

We are concerned here mainly with a comparison of the Silov boundary for natural systems defined by Rickart [7] and the type II boundary for locally m-convex algebras defined by the author [1]. We also relate these boundaries to the strong boundary defined for certain natural systems by Meyers [4]. Our main results are found in Section 3 where we show that for every natural system (X, A) Rickart's boundary $S_r(X, A)$ is contained in the type II boundary $S_2(X, A)$ and that when X is locally compact they agree. Further, if X is also σ -compact and if A is closed in C(X), then the strong boundary $S_{st}(X, A)$ is dense in $S_r(X, A) = S_2(X, A)$. We give examples to show that in general we may have (1) $\phi = S_{st}(X, A) \neq S_r(X, A) = S_2(X, A)$; (2) $\phi =$ $S_{st}(X,A) = S_r(X,A) \neq S_2(X,A)$; and (3) $\phi = S_{st}(X,A) \subseteq S_r(X,A) \subseteq S_2(X,A)$. In [2] we showed that if A is a singly-generated (singly-rationally-generated) complete locally m-convex algebra with identity, M(A) is the spectrum of A, and if $S_2(M(A), A) = \phi$, then $A = \text{Hol } (D) \oplus R(A)$, where D, the spectrum of any generator of A, is an open polynomially convex subset of C (open subset of C) and R(A) is the radical of A. We extend this result here to show that if $S_r(M(A))$, A) = ϕ (where we have restricted attention to locally m-convex algebras A for which $(M(A), A^{\hat{}})$ is natural), then, in fact, M(A) is locally compact. Thus, $S_2(M(A), A) = \phi$ and the conclusion of the above-stated theorem is obtained. We give an example showing that $S_{st}(M(A), A) = \phi$ is not a sufficient condition in the singly-rationally-generated case.

We close by considering natural systems (X, A) where X is an open (locally compact) subset of \mathbb{C} and giving conditions in order that A consist of analytic functions on X (functions analytic in the interior of X). The results of this section are essentially corollaries of theorems of Rudin [9] or Meyers [4] and the theorems of section 2 of this paper.

We wish to thank the referee for some helpful suggestions concerning the presentation of the material in Section 3.

^{*} The research for this paper was supported in part by National Science Foundation grant GP 8346.