Operators with Compact Imaginary Part

W. B. ARVESON

Let B be a C*-algebra with identity e and let S be a linear subspace of B such that e belongs to S. An irreducible *-representation π of B on a Hilbert space $\mathfrak S$ is called a boundary representation for S if the restricted map $\pi|_S$: $S \to \mathfrak L(\mathfrak S)$ has a unique completely positive linear extension to B (namely π). Boundary representations were introduced in [1]; their usefulness for studying non self-adjoint families of operators derives from the following

Implementation theorem Let S_i be a linear subspace of a C^* -algebra B_i , i=1,2, such that the identity of B_i belongs to S_i , and such that S_i generates B_i as a C^* -algebra. Assume that the intersection of the kernels of all boundary representations of B_i for S_i is $\{0\}$, i=1,2. Then every completely isometric linear map of S_1 on S_2 , which preserves identities, is implemented by a *-isomorphism of B_1 onto B_2 .

Here is one way that kind of situation can occur in operator theory. Suppose we are given a finite set $\{T_1, \dots, T_n\}$ of operators on a Hilbert space $\mathfrak F$ which is irreducible in the sense that the only subspaces of $\mathfrak F$ invariant under the set $\{T_1, \dots, T_n, T_1^*, \dots, T_n^*\}$ are $\{0\}$ and $\mathfrak F$. Let $\mathfrak F$ be the (finite dimensional) linear span of $\{I, T_1, \dots, T_n\}$ and let $\mathfrak F$ be the C^* -algebra generated by $\mathfrak F$. Then the identity representation of $\mathfrak F$ is irreducible and of course has trivial kernel, so the hypotheses of the implementation theorem will be satisfied when the identity representation is a boundary representation for $\mathfrak F$. Unfortunately this need not be so in general, even in the "nice" situation where $\mathfrak F$ is a type I C^* -algebra (in the case at hand this would imply that $\mathfrak F$ contains the compact operators), see $\mathfrak F$. 4 of [1] for an example. Therefore it is of interest to know what additional conditions on $\{T_1, \dots, T_n\}$ will lead to the desired conclusion. The following theorem implies that it is enough to know that some T_i has compact imaginary part.

Theorem 1. Let S be an irreducible set of operators on \mathfrak{S} such that the norm-closed linear span of $\mathfrak{S} \cup \mathfrak{S}^*$ contains a nonzero compact operator. Let φ be a completely positive linear map of the C*-algebra generated by S into $\mathfrak{L}(\mathfrak{F})$ such that $||\varphi|| \leq 1$ and $\varphi(T) = T$ for all T in S. Then φ is the identity map.

The earlier version of this theorem [2] required more, namely that every operator in S be compact. This somewhat more general form was obtained by C. A. Akemann and the author. This result, together with the Implementation