Operators with Compact Imaginary Part
W. B. ARVESON

Let B be a C*-algebra with identity e and let S be a linear subspace of B
such that e belongs to S. An irreducible *-representation = of B on a Hilbert
space O is called a boundary representation for S if the restricted map =l :
S — £(9) has a unique completely positive linear extension to B (namely ).
Boundary representations were introduced in [1]; their usefulness for studying
non self-adjoint families of operators derives from the following

Implementation theorem Let S; be a linear subspace of a C*-algebra B; ,
© = 1, 2, such that the identity of B, belongs to S; , and such that S; generates
B, as a C*-algebra. Assume that the intersection of the kernels of all boundary
representations of B; for 8; is {0}, ¢ = 1, 2. Then every completely isometric
linear map of S, on 8. , which preserves identities, is implemented by a *-isomor-
phism of B, onto B, .

Here is one way that kind of situation can occur in operator theory. Suppose
we are given a finite set {T,, --- , T,} of operators on a Hilbert space $ which
is irreducible in the sense that the only subspaces of § invariant under the
set {Ty, -+, T.,T%,---, T%} are {0} and D. Let S be the (finite dimensional)
linear span of {I, T, , --- , T,} and let ® be the C*-algebra generated by 8.
Then the identity representation of ® is irreducible and of course has trivial
kernel, so the hypotheses of the implementation theorem will be satisfied when
the identity representation is a boundary representation for 8. Unfortunately
this need not be so in general, even in the ‘“nice’” situation where & is a type I

*-algebra (in the case at hand this would imply that ® contains the compact
operators), see 3.5.4 of [1] for an example. Therefore it is of interest to know
what additional conditions on {T,, ---, T,.} will lead to the desired conclusion.
The following theorem implies that it is enough to know that some T'; has
compact imaginary part.

Theorem 1. Let 8 be an irreducible set of operators on O such that the norm-
closed linear span of 8§ \J 8* contains a nonzero compact operator. Let ¢ be a com-
pletely positive linear map of the C*-algebra generated by 8 into £L(P) such that
llell £ 1and o(T) = T for all T in 8. Then ¢ is the identity map.

The earlier version of this theorem [2] required more, namely that every
operator in 8§ be compact. This somewhat more general form was obtained by
C. A. Akemann and the author. This result, together with the Implementation
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