The "Lifting Theorem" for Intertwining Operators and Some New Applications

BÉLA SZ.-NAGY & CIPRIAN FOIAŞ

1. It is well known (see e.g. [2]) that for every contraction T on a Hilbert space H there exists an isometry V on some Hilbert space K containing H as a subspace, such that

(1)
$$TP = PV$$
 (on K), and $K = H \vee VH \vee V^2H \vee \cdots$,

P denoting the orthogonal projection from K onto H. These properties determine K and V up to an isometric isomorphism: V is called the minimal isometric dilation of T.

The "Lifting Theorem" for interwining operators reads as follows:

Theorem. Let $T_i(i=1,2)$ be contractions on H_i , with the respective minimal isometric dilations V_i on K_i . Let X be an operator $H_2 \to H_1$ such that

$$(2) T_1 X = X T_2.$$

Then there exists an operator $Y: K_2 \to K_1$ such that

(3)
$$V_1Y = YV_2, P_1Y(I - P_2) = 0,$$

and

$$(4) P_1Y \mid H_2 = X.$$

Moreover, we can require that ||Y|| = ||X||. Conversely, every operator $Y: K_2 \to K_1$ satisfying (3) gives rise, by (4), to an operator X satisfying (2).

(The "converse" part is obvious.)

This theorem was found and published early in 1968 by Sz.-Nagy and Foias [4]. The proof in [4] (see also [2]) begins by multiplying equation (2) from the right by P_2 ; using (1) we obtain

(2')
$$T_1X' = X'V_2$$
, where $X' = XP_2 : K_2 \rightarrow H_1$.

In this equation V_2 is already an isometry and all we have to do is to find an operator $Y: K_2 \to K_1$ such that

$$V_1Y = YV_2$$
, $P_1Y = X'$, $||Y|| = ||X'||$;

901

Indiana University Mathematics Journal, Vol. 20, No. 10 (1971).