Vitushkin's Localization Operator

JOHN GARNETT

An obvious difficulty with function theory is that we cannot use C^* multipliers or partitions of unity. This difficulty can be avoided using Vitushkin's localization operator, which employs a trick frequently used in several complex variables. In this expository talk I will discuss this operator and give a typical application.

Let φ be C^{∞} with compact support X, and let $f \in L^{\infty}(\mathbb{C})$. Write

$$\begin{split} (T_{\varphi}f)(z) &= f(z)\varphi(z) + \frac{1}{\pi} \iint \frac{f(\xi)}{\xi - z} \frac{\partial \varphi}{\partial \bar{\xi}} \, d\xi \, d\eta, \\ \xi &= \xi + i\eta, \qquad \frac{\partial}{\partial \bar{\xi}} = \frac{1}{\partial} \left(\frac{\partial}{\partial \xi} + i \, \frac{\partial}{\partial \eta} \right). \end{split}$$

To clarify that T_{φ} does, we use the notation of distribution theory. By Green's Theorem $T_{\varphi}f = \varphi f - u$, where $u \in L^{\infty}$, $u(\infty) = 0$ and

$$\frac{\partial u}{\partial \bar{z}} = f \frac{\partial \varphi}{\partial \bar{z}} \quad \text{(weakly)}.$$

Thus

$$\frac{\partial}{\partial \bar{z}} T_{\varphi} f = \varphi \frac{\partial f}{\partial \bar{z}} \text{ (weakly)}.$$

Weyl's Lemma then implies

- (i) $T_{\varphi}f$ is analytic off X, and wherever f is analytic.
- (ii) $f T_{\varphi}f$ is analytic on the interior of $\{\varphi = 1\}$.

Of course these are easy to verify directly.

Now let D be open, $\lambda \in \partial D$ and U a neighborhood of λ . Suppose $f \in H^{\infty}(D \cap U)$, the ring of bounded analytic functions on $D \cap U$, and declare f = 0 elsewhere. Center at λ two discs Δ and $\tilde{\Delta}$ of radii δ and 2δ , with $\tilde{\Delta} \subset U$. Let $\varphi \equiv 1$ on Δ , $\varphi \equiv 0$ off $\tilde{\Delta}$. Taking $F = T_{\varphi}f$ plus a constant we have the

Extension Lemma. There is $F \in H^{\infty}(D)$ such that F - f is continuous and zero at λ .