Decomposition of Banach Spaces

JORAM LINDENSTRAUSS

The purpose of this lecture is to discuss some open problems concerning the possibility of decomposing infinite-dimensional Banach spaces into direct sums. Typically for Banach space theory this discussion is presented on two levels: the level of general Banach spaces and the more concrete level of the classical Banach spaces. We state three central questions on decomposition and then give a brief survey of the present knowledge in these directions.

Let X be an infinite-dimensional Banach space.

- (i) X is called *indecomposable* if there is no bounded linear projection P in X such that dim $PX = \dim (I P)X = \infty$.
- (ii) X is called *prime* if for every bounded linear projection P on X with dim $PX = \infty$ we have $PX \approx X$ (\approx denotes isomorphism *i.e.* linear homeomorphism).
- (iii) X is called *primary* if for every bounded linear projection P on X at least one of the relations $PX \approx X$ or $(I P)X \approx X$ holds.

Clearly, \Rightarrow prime \Rightarrow primary. The primary spaces are those spaces which cannot be represented as direct sums of "simpler" spaces.

- Question 1. Do there exist indecomposable Banach spaces?
- Question 2. Are c_0 and l_p , $1 \le p \le \infty$, the only prime spaces?
- Question 3. Which are the primary spaces? In particular, are the "classical" separable spaces primary?

It is widely conjectured that the answer to Question 1 is negative. Unfortunately, however, there is no method known of constructing a non-trivial projection in a general separable infinite-dimensional Banach space. Only if one assumes quite strong special assumptions (e.g. that the space can be ordered as a boundedly complete linear lattice) is it possible (and then generally easy) to prove the existence of a non-trivial projection. Actually one does not know whether there is a Banach space X such that every bounded linear operator $T: X \to X$ is of the form $T = \lambda I + C$ with C compact and λ a scalar. My feeling is that if one could construct for every X a non trivial operator $T: X \to X$ then the same method should enable the construction of a non-trivial projection.

While practically nothing of significance is known concerning Question 1 in