On the Stone—Weierstrass Theorem of C*-algebras

SHÔICHIRÔ SAKAI

1. Introduction. Let A be the C^* -algebra of all complex valued continuous functions vanishing at infinity on a locally compact space. The Stone-Weierstrass Theorem gives the conditions under which a C-*subalgebra B coincides with A. A plausible non-commutative extension of the Stone-Weierstrass Theorem is

Conjecture. Let $\mathfrak A$ be a C^* -algebra and let $\mathfrak B$ be a C^* -subalgebra of $\mathfrak A$. Let $P(\mathfrak A)$ be the set of all pure states of $\mathfrak A$ and let $\mathfrak O$ be the identically zero function on $\mathfrak A$. Suppose that $\mathfrak B$ separates $P(\mathfrak A) \cup (\mathfrak O)$, then $\mathfrak A = \mathfrak B$.

Kaplansky [9] proved a theorem equivalent to the conjecture for GCR C^* -algebras (equivalently, type I C^* -algebras [6], [13]). Glimm [5], Ringrose [10] and Akemann [1] gave some considerations related to this conjecture.

The purpose of this paper is to present another consideration to the conjecture. Unfortunately, we can not solve the problem completely; but the author feels that the results obtained here indicate strongly that the conjecture will be true for all separable C^* -algebras. Throughout the present paper, we shall deal with separable C^* -algebras only. The main tool to attack the problem is the reduction theory. As corollaries of our results, we shall show: (1) Let $\mathfrak A$ be a separable C^* -algebra and let $\mathfrak B$ be a uniformly hyperfinite C^* -subalgebra of $\mathfrak A$. Suppose that $\mathfrak B$ separates $P(\mathfrak A) \cup (0)$, then $\mathfrak A = \mathfrak B$; (2) A new proof of Kaplansky's Theorem in the separable case; (3) Let $\mathfrak A$ be a separable C^* -algebra and let $\mathfrak B$ be a C^* -subalgebra of $\mathfrak A$. Suppose that there exists a *-representation $\{\pi, \underline{\mathfrak B}\}$ of or such that $\overline{\pi(\mathfrak B)} \subset \overline{\pi(\mathfrak A)}$ and the commutant of $\pi(\mathfrak B)$ is hyperfinite, where $\overline{\pi(\cdot)}$

is the weak closure of $\pi(\cdot)$. Then, \mathfrak{B} can not separate $P(\mathfrak{A}) \cup (0)$; (4) Let \mathfrak{A} be a separable C^* -algebra and let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} . Suppose that there exists a *-representation $\{\pi, \mathfrak{F}\}$ of \mathfrak{A} such that $\overline{\pi(\mathfrak{A})}$ is finite W^* -algebra and $\overline{\pi(\mathfrak{B})} \subset \overline{\pi(\mathfrak{A})}$, where $\overline{\pi(\cdot)}$ is the weak closure of $\pi(\cdot)$. Then, \mathfrak{B} can not separate

 $P(\mathfrak{A}) \cup (0)$. As a corollary of this result, if G is a countable discrete group and if H is a proper subgroup of G, then there exist two elementary positive definite functions φ_1 , φ_2 on G such that $\varphi_1 = \varphi_2$ on H, but $\varphi_1 \neq \varphi_2$.

University of Pennsylvania

Date communicated: October 15, 1970