An Inversion Formula for Analytic Families of General Wiener-Hopf Operators

MARVIN SHINBROT*

1. Let H be a separable Hilbert space, A a linear operator on H, and P an orthogonal projection onto the subspace R(P) of H. A general Wiener-Hopf operator is any operator of the form

$$T_P(A) = PA \mid R(P),$$

the vertical bar denoting restriction. There are a great many applications in which one wishes to solve an equation

$$T_P(A)x = y;$$

because of this, it is of interest to derive a formula for $T_P^{-1}(A)$, the inverse of $T_P(A)$.

I derived such a formula in [2] and [3], assuming that A is positive and self-adjoint. This formula is

(1.1)
$$T_{P}^{-1}(A)y = \sum_{n} (y, \chi_{n})\chi_{n},$$

where parentheses denote the scalar product in H, and $\{\chi_n\}$ is any sequence in H with the following properties:

$$(1.2) sp {\chi_n} = R(P)$$

and

(1.3)
$$\{A^{1/2}\chi_n\}$$
 is orthonormal.

Notice that if it happens that $T_P(A)$ has a sequence of eigenfunctions, complete in R(P), $\{\chi_n\}$ can be taken to be that sequence. In that case, (1.1) is simply the usual eigenfunction expansion for $T_P^{-1}(A)$. On the other hand, (1.1) is valid whether or not $T_P(A)$ possesses such a sequence of eigenfunctions. Notice also that, given any positive, self-adjoint operator A and any projection P, the sequence $\{\chi_n\}$ needed in (1.1) can be computed by selecting any sequence $\{\omega_n\}$ whose span is R(P), and then orthonormalizing $\{A^{1/2}\omega_n\}$ by the Gram-Schmidt process. The fact that the sequence $\{\chi_n\}$ can be computed so simply was used in [4] to solve certain integral equations that arise in applications.

^{*} Supported, in part, by the National Science Foundation (GP-8936).