Multiple Solutions for a Class of Nonlinear Boundary Value Problems

JOACHIM A. HEMPEL

Communicated by D. GILBARG

- 1. Introduction. This paper is concerned with the existence of multiple solutions of variational boundary value problems of the following general form:
- (1.1) div $(a(x) \text{ grad } u) + c(x)u b(x, u) = 0, \quad u = 0 \text{ on } \partial\Omega.$

 Ω is a bounded region in Euclidean *n*-space. a(x) is a measurable bounded symmetric $(n \times n)$ matrix with least eigenvalue greater than $\nu > 0$ for all $x \in \Omega$. c(x) is a non-negative function belonging to $L_{\rho}(\Omega)$ with $\rho > n/2$. b(x, t) is measurable in x, continuous in t, and satisfies the following conditions.

- (b.i) b(x, -t) = -b(x, t) for all t and almost all x.
- (b.ii) tb(x, t) > 0 for all $t \neq 0$ and almost all x.
- (b.iii) For almost all x, $t^{-1}b(x, t)$ is an increasing function of |t| such that $\lim_{t\to 0} t^{-1}b(x, t) = 0; \qquad \lim_{t\to \infty} t^{-1}b(x, t) \ge c(x).$

The second of these limits is allowed to be $+\infty$.

(b.iv) If n > 1, $|b(x, t)| \le m(x) + k |t|^r$ where $m(x) \in L_q(\Omega)$, q = 2n/(n+2); r < (n+2)/(n-2). (If n = 2 and b is bounded in x it suffices to assume that |b(x, t)| grows less rapidly than e^{t^2} .)

In Theorems 2 and 4, but not 1, 3 and 5, we also assume

(b.v) For almost all x, b(x, t) is of class C^2 in t. Denote the first and second partial derivatives with respect to t by b' and b'' respectively. We assume that $b'(x, t) > t^{-1}b(x, t)$ for $t \neq 0$ and almost all x, and, if n > 1,

$$|b'(x,t)| \le m_1(x) + k_1 |t|^{r-1};$$
 $|tb''(x,t)| \le m_2(x) + k_2 |t|^{r-1},$
where $m_1(x)$, $m_2(x) \in L_{n/2}(\Omega)$; $r < (n+2)/(n-2).$

Closely related to (1.1) is the linear characteristic value problem

(1.2)
$$\operatorname{div} (a(x) \operatorname{grad} w) + \mu c(x)w = 0, \quad w = 0 \text{ on } \partial\Omega.$$

983

Indiana University Mathematics Journal, Vol. 20, No. 11 (1971).