Some Results of Chern-do Carmo-Kobayashi Type and the Length of Second Fundamental Form

BANG-YEN CHEN

Communicated by S. S. Chern

1. Introduction. Let M be an n-dimensional manifold immersed in an (n+p)-dimensional Riemannian manifold N^{n+p} of constant sectional curvature c. Let h be the second fundamental form of this immersion; it is a certain symmetric bilinear mapping $T_x \times T_x \to T_x^{\perp}$ for $x \in M$, where T_x is the tangent space of M at x and T_x^{\perp} the normal space of M at x. We denote by S the square of the length of h. Let H be the mean curvature vector, and \langle , \rangle the scalar product of N^{n+p} . If there exists a function λ on M such that

$$\langle \mathbf{h}(\mathbf{X},\,\mathbf{Y}),\,\mathbf{H}\rangle = \lambda\langle\mathbf{X},\,\mathbf{Y}\rangle,$$

for all tangent vectors \mathbf{X} , \mathbf{Y} on M, then M is called a *pseudo-umbilical submanifold* of N^{n+p} . It is clear that $\lambda \geq 0$, and $\lambda^{1/2}$ is just the length of \mathbf{H} , called the *mean curvature*. If the mean curvature vector $\mathbf{H} = 0$ identically, then M is called a *minimal submanifold* of N^{n+p} . Every minimal submanifold of N^{n+p} is itself a pseudo-umbilical submanifold of N^{n+p} .

In general, let $S^a(r)$ denote a q-dimensional sphere in R^{q+1} with radius r. Let m and n be positive integers such that m < n and let $M_{m;n-m} = S^m((m/n)^{1/2}) \times S^{n-m}((n-m/n)^{1/2})$. We imbed $M_{m,n-m}$ into $S^{n+1} = S^{n+1}(1)$ as follows. Let (\mathbf{u}, \mathbf{v}) be a point of $M_{m;n-m}$ where $\mathbf{u}(\text{resp. }\mathbf{v})$ is a vector in $R^{m+1}(\text{resp. }R^{n-m+1})$ of length $(m/n)^{1/2}(\text{resp. }(n-m/n)^{1/2})$. We can consider (\mathbf{u}, \mathbf{v}) as a unit vector in $R^{n+2} = R^{m+1} \times R^{n-m+1}$. Then $M_{m,n-m}$ is a minimal submanifold of S^{n+1} satisfying S = n. Hence it is a pseudo-umbilical submanifold of S^{n+1} .

We shall now define the Veronese surface. Let (x, y, z) be the natural coordinate system in R^3 and $(u^1, u^2, u^3, u^4, u^5)$ the natural coordinate system in R^5 . We consider the mapping defined by

$$u^{1} = \frac{1}{3^{1/2}} yz, \qquad u^{2} = \frac{1}{3^{1/2}} xy, \qquad u^{3} = \frac{1}{3^{1/2}} xz,$$

$$u^{4} = \frac{1}{2(3^{1/2})} (x^{2} - y^{2}), \qquad u^{5} = \frac{1}{6} (x^{2} + y^{2} - 2z^{2}).$$

Indiana University Mathematics Journal, Vol. 20, No. 12 (1971).