Growth and Continuity of Functions Satisfying
Quadratic Integral Inequalities

CHARLES A. GREENHALL

Communicated by M. ROSENBLATT

1. Introduction. Let f be a real measurable function on [0, 1]. We are con-
cerned with conditions on f of the form
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Here, p is a continuous function on [—1, 1] such that

(1.2) p) = p(—z) > 0 for > 0, pTonl0,1], p(0) = 0.

A. Garsia, E. Rodemich, and H. Rumsey [3, 4] considered a more general
condition
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Their theorem 1is

Theorem 1.1. Assume that
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Then we may make f continuous by modifying it on a set of measure 0. The modified
f satisfies
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for all z, y in [0, 1].
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