Local Isometric Embeddings of Surfaces into Euclidean Four Space

HOWARD JACOBOWITZ

Communicated by S. S. Chern

An old unsolved problem in differential geometry concerns the local isometric embedding of surfaces into three dimensional Euclidean space. Let g be a metric defined in a neighborhood of a point $p \in \mathbb{R}^2$ and let E^3 denote \mathbb{R}^3 with the usual Euclidean metric. We ask if there exists a possibly smaller neighborhood U of p and a map $f: U \to E^3$, $f(x_1, x_2) = (f^1(x_1, x_2), f^2(x_1, x_2), f^3(x_1, x_2))$ such that the induced metric on U agrees with the original metric g. That is, we seek to solve the system of equations

$$\sum_{r=1}^{3} \frac{\partial f^{r}}{\partial x_{i}} \frac{\partial f^{r}}{\partial x_{i}} = g_{ij}(x_{1}, x_{2}); \qquad 1 \leq i \leq j \leq 2,$$

where g_{ii} are the components of the metric g with respect to local coordinates x_1 , x_2 . If such a map f exists, the metric g is called *realizable*. There are several reasons for excluding the case where the map f is only in C^1 —any continuous metric can be realized by a C^1 map [1] and very little differential geometry can be done with such embeddings.

It is not known if all metrics are realizable (i.e., smoothly realizable). Affirmative results occur only in special cases; for instance, if the metric is analytic or the Gaussian curvature K of the metric is nonzero at p. Both of these results can be proved using a device introduced by Weingarten [2]. In this note we make the simple observation that this same device yields a proof that all two dimensional surfaces have local isometric embeddings into E^4 . We do this by a reduction to the case of a metric with positive Gaussian curvature. We also provide a new proof that such metrics are realizable.

Pogorelov has recently constructed a $C^{2,1}$ metric with no C^2 realization in E^3 (Soviet Math. Dokl. 12(1971), 729–731). This example may be modified to provide a $C^{3+\alpha}$ metric with no such $C^{2+\beta}$ realization, $1 > \beta > 2\alpha > 0$. This demonstrates the validity of our conjecture, contained in the Remark below, that additional smoothness occurs upon allowing an extra dimension.