Differential Operators of Infinite Order on a Lie Group, II

ROE GOODMAN

Communicated by B. Kostant

Introduction. Let $\mathfrak g$ be a finite-dimensional complex Lie algebra, and $\mathfrak U(\mathfrak g)$ the universal envoloping algebra of $\mathfrak g$. In this paper, which is a continuation of [6], we construct certain complete topological algebras, each containing $\mathfrak U(\mathfrak g)$ as a dense subalgebra, and study the representations of these algebras obtained from Banach-space representations of G_0 (G_0 being a simply-connected real Lie group whose Lie algebra $\mathfrak g_0$ is a real form of $\mathfrak g$). Automorphisms of $\mathfrak g$ extend continuously to automorphisms of these algebras, and we obtain results on the structure of these algebras as Aut ($\mathfrak g$)-modules, generalizing the Poincaré-Birkhoff-Witt Theorem. We illustrate some applications of these algebras by constructing an operational calculus for elements of $\mathfrak U(\mathfrak g)$ and obtaining existence and uniqueness theorems for an abstract Cauchy problem.

In more detail, the contents of the paper are as follows: In §1 we construct a one-parameter family of Fréchet algebras $\alpha_{\lambda}(\mathfrak{g})$, $0 < \lambda < \infty$, each containing $\mathfrak{U}(\mathfrak{g})$ as a dense subalgebra. The assignment $\mathfrak{g} \to \alpha_{\lambda}(\mathfrak{g})$ is functorial, and in §2 we show that when $\lambda \geq 1$, the space $\alpha_{\lambda}(\mathfrak{g})$ is isomorphic as an Aut (\mathfrak{g})-module to the space of entire functions on \mathfrak{g}' of exponential order $1/\lambda$ and minimal type. In particular, the algebra $\alpha_1(\mathfrak{g})$ coincides with the "associative hyper-envelope" $\mathfrak{F}(\mathfrak{g})$ constructed somewhat differently by P. K. Raševskiĭ in [17] (cf. also [12]).

If π is a strongly continuous representation of the group G_0 (G_0 as above) on a Banach space $\mathfrak{R}(\pi)$, and if $S_{\lambda}(\pi)$ is the subspace of $\mathfrak{R}(\pi)$ defined in [6], then π defines a representation of the algebra $\mathfrak{R}_{\lambda}(\mathfrak{g})$ on $S_{\lambda}(\pi)$, which is treated in §3. When π is the regular representation, either on $L_p(G_0)$, $1 \leq p < \infty$, or on $C_0(G_0)$, and when $\lambda > 1$, then we obtain in this way a faithful representation of $\mathfrak{R}_{\lambda}(\mathfrak{g})$ as "differential operators of infinite order" acting on $S_{\lambda}(\pi)$. In the case $\lambda = 1$, the algebra $\mathfrak{R}_1(\mathfrak{g})$ can be faithfully represented acting on the space of germs of analytic functions at the identity of G_0 [17]. (We do not know if the representation of $\mathfrak{R}_1(\mathfrak{g})$ on the space of analytic vectors for the regular representation is faithful, in general.)