Measure Preserving Homeomorphisms of the Unit Disc

H. M. REIMANN

Communicated by F. Gehring

We shall study homeomorphisms of the closed unit disc U onto itself which preserve the two dimensional Lebesgue measure m of any measurable set in U. Special emphasis is given to the investigation of the induced boundary correspondence.

The regularity conditions for the homeomorphisms h will successively be weakened. Starting off with diffeomorphism and bi-Lipschitzian mappings we are led to homeomorphisms with generalized partial derivatives and compositions thereof. All mappings considered will be sense preserving.

A homeomorphism h of the closed unit disc U onto itself is said to have boundary values $\psi(\varphi)$ if $h(e^{i\varphi}) = e^{i\psi(\varphi)}$. If we say that the boundary homeomorphism ψ has certain properties, we mean that ψ considered as a function from R^1 onto R^1 has these properties. Clearly $\psi(\varphi) - \varphi$ will always be periodic with period 2π . Also, since ψ is a homeomorphism the derivative $\psi' = d\psi/d\varphi$ exists a.e. and is a periodic function.

The simplest examples of measure preserving homeomorphisms are the rotations. These induce a boundary correspondence $\psi(\varphi) = \varphi + \text{const.}$ They are the only mappings with Lipschitz constant 1 (a homeomorphism h with $J_h = 1$ a.e. in U and satisfying $|h(x) - h(x')| \leq |x - x'|$ for all x, x' in U must be conformal).

If the measure preserving homeomorphism h is Lipschitz-continuous with constant $c \ge 1$ (i.e. $|h(x) - h(x')| \le c |x - x'|$ for all x, x' in U), then the same holds for its inverse and also for its boundary correspondence. This follows easily from the fact that such a Lipschitz-continuous homeomorphism h is a.e. (totally) differentiable with Jacobian determinant equal to 1. h therefore is a c^2 -quasiconformal mapping and the same must hold for its inverse h^{-1} . But then h^{-1} is a.e. differentiable and its Jacobian determinant is equal to 1 a.e. Hence h^{-1} is Lipschitz continuous with constant c.

Conversely if the boundary homeomorphism ψ and its inverse are Lipschitz-continuous with constant c, then there exists a measure preserving homeo-