Measure Preserving Homeomorphisms of the Unit Disc

H. M. REIMANN

Communicated by F. Gehring

We shall study homeomorphisms of the closed unit dise U onto itself which preserve the two dimensional Lebesgue measure m of any measurable set in U. Special emphasis is given to the investigation of the induced boundary correspondence.

The regularity conditions for the homeomorphisms h will successively be weakened. Starting off with diffeomorphism and bi-Lipschitzian mappings we are led to homeomorphisms with generalized partial derivatives and compositions thereof. All mappings considered will be sense preserving.

A homeomorphism h of the closed unit disc U onto itself is said to have boundary values $\psi(\varphi)$ if $h\left(e^{i \varphi}\right)=e^{i \psi(\varphi)}$. If we say that the boundary homeomorphism ψ has certain properties, we mean that ψ considered as a function from R^{1} onto R^{1} has these properties. Clearly $\psi(\varphi)-\varphi$ will always be periodic with period 2π. Also, since ψ is a homeomorphism the derivative $\psi^{\prime}=d \psi / d \varphi$ exists a.e. and is a periodic function.

The simplest examples of measure preserving homeomorphisms are the rotations. These induce a boundary correspondence $\psi(\varphi)=\varphi+$ const. They are the only mappings with Lipschitz constant 1 (a homeomorphism h with $J_{h}=1$ a.e. in U and satisfying $\left|h(x)-h\left(x^{\prime}\right)\right| \leqq\left|x-x^{\prime}\right|$ for all x, x^{\prime} in U must be conformal).

If the measure preserving homeomorphism h is Lipschitz-continuous with constant $c \geqq 1$ (i.e. $\left|h(x)-h\left(x^{\prime}\right)\right| \leqq c\left|x-x^{\prime}\right|$ for all x, x^{\prime} in U), then the same holds for its inverse and also for its boundary correspondence. This follows easily from the fact that such a Lipschitz-continuous homeomorphism h is a.e. (totally) differentiable with Jacobian determinant equal to 1. h therefore is a c^{2}-quasiconformal mapping and the same must hold for its inverse h^{-1}. But then h^{-1} is a.e. differentiable and its Jacobian determinant is equal to 1 a.e. Hence h^{-1} is Lipschitz continuous with constant c.

Conversely if the boundary homeomorphism ψ and its inverse are Lipschitzcontinuous with constant c, then there exists a measure preserving homeo-

