Estimates of Conformal Mappings Near the Boundary

DIETER GAIER

Communicated by P. R. HALMOS

§1. Introduction and statement of results.

1.1. The Problem. Let G be a finite, simply connected region with $0 \in G$ and $1 \in \partial G$, and let f be the conformal map of G onto the disc $D_w = \{|w| < 1\}$ with f(0) = 0, f(1) = 1; the meaning of f(1) = 1 will become clear in a moment. We are interested in the *problem*: If z is near z = 1, how near is w = f(z) to w = 1?

This problem of the continuity of f near the boundary has been studied by various authors including Ferrand [3], Lavrientiev [7], and Warschawski [11], [12], [13]. However, the estimates of these authors do not contain numerically useful constants. It is the purpose of this paper to give estimates of the form $|w - 1| < C |z - 1|^{\mu}$, where C and μ depend on geometric conditions. The order μ is always sharp, and C is a small constant which in some cases is best possible.

Our proofs depend on estimates of harmonic measure which are interesting in themselves. We emphasize that we only study the map f from G onto D_w , not its inverse f^{-1} .

1.2. Statement of the results. Let G be as above. We say that $z \in G$ is visible from a finite $z_0 \in \partial G$, if the open line segment $\ell = (z, z_0)$ connecting z to z_0 is contained in G, and we say that G is starshaped with respect to $z_0 \in \partial G$, if every $z \in G$ is visible from z_0 .

Theorem 1. Assume that $z \in G$ is visible from z = 1 and that the function f mapping G onto D_w is normalized by f(0) = 0 and $f(t) \to 1$ as $t \to 1$ on $\ell = (z, 1)$. Then, with w = f(z), we have

$$|w-1| < 4|z-1|^{1/2}.$$

If, in addition, $G \subset H$, where H is a half plane with 1 $\varepsilon \partial H$, we have

581

Indiana University Mathematics Journal, Vol. 21, No. 7 (1972)