Commutators and Scattering Theory II. A Class of One Body Problems

RICHARD B. LAVINE

Communicated by R. PHILLIPS

1. Introduction. A quantum mechanical particle in \mathbb{R}^3 interacting with a potential V(x) which approaches zero as $|x| \to \infty$ is expected either to be bound with negative energy or to be scattered, behaving as $t \to \pm \infty$ like a free particle. This dichotomy would be reflected mathematically by a representation of the Hilbert space

(1.1)
$$\mathfrak{K} = \mathfrak{L}^{2}(\mathbb{R}^{3}) = \mathfrak{K}_{b} \bigoplus \mathfrak{R}(\Omega_{\pm})$$

where \mathfrak{K}_b is the subspace spanned by all negative energy eigenvectors of the Hamiltonian operator $H = H_0 + V$ ($H_0 = -\Delta$), and $\mathfrak{R}(\Omega_{\pm})$ is the range of the wave operator

(1.2)
$$\Omega_{\pm}(H, H_0) = \operatorname{s-lim}_{t \to \pm \infty} e^{iHt} e^{-iH_0 t}$$

(The statement (1.1) is meant to imply $\Re(\Omega_+) = \Re(\Omega_-)$.)

The problem of proving (1.1) can be divided into four parts:

- (1.3) Existence of the limit (1.2).
- (1.4) Absence of positive eigenvalues for H.
- (1.5) $\Re(\Omega_{\pm}) = \Re_{ac}$ (the range of the absolutely continuous part of $E(\cdot)$, the spectral family of H_{\cdot})
- (1.6) $\mathcal{K}_{sc} = \{0\}$ (\mathcal{K}_{sc} is the range of the singular continuous part of $E(\cdot)$.)

For $V(x) \leq C |x|^{-\gamma}$, $\gamma > 1$, this program has been carried out (see [6]) except for one gap: for $\gamma < 5/4$ (1.6) has not been proved, although a proof of (1.6) under more general circumstances was announced by S. Agmon at the 1970 I. C. M. in Nice. For $0 < \gamma \leq 1$ the situation is different. Since the wave operators fail to exist in general [4], problems (1.3) and (1.5) must be reformulated. Also, positive energy eigenvalues may actually exist if V oscillates badly. Problem (1.4) has been solved for potentials which do not oscillate too badly

Indiana University Mathematics Journal, Vol. 21, No. 7 (1972)