The Boundary Gradient Estimate for Quasilinear Elliptic and Parabolic Differential Equations

NEIL S. TRUDINGER

Communicated by D. Gilbarg

Let Ω be a bounded domain in Euclidean n-space, $n \geqq 2$. We shall write a second order, quasilinear differential operator, acting on functions $u \varepsilon C^{2}(\bar{\Omega})$, in the form

$$
\begin{equation*}
Q u=a^{i j}\left(x, u, u_{k}\right) u_{i j}+a\left(x, u, u_{k}\right), \quad a^{i j}=a^{i i} \tag{1}
\end{equation*}
$$

and assume that the coefficients $a^{i j}, 1 \leqq i, j, k \leqq n$ lie in $C^{0}\left(\bar{\Omega} \times E^{n+1}\right)$. We follow the customary convention that repeated indices indicate summation from 1 to n and have abbreviated derivatives by $u_{i}=u_{x_{i}}, u_{i j}=u_{x_{i x i}}$ etc. The operator Q is elliptic if the coefficient matrix $\left\|a^{i j}\right\|$ is positive in $\Omega \times E^{n+1}$.

It is well known by the fundamental work of Ladyzhenskaya and Ural'tseva [5] that the solvability of the Dirichlet problem for Q in Ω depends upon the establishment of $C^{1}(\bar{\Omega})$ estimates for the solutions of a related one parameter family of Dirichlet problems. The derivation of these estimates naturally splits into three stages: (i) estimates for $\sup _{\Omega}|u|$; (ii) estimates for $\sup _{\partial \Omega}|D u|$ in terms of $\sup _{\Omega}|u|$; (iii) estimates for $\sup _{\Omega}|D u|$ in terms of $\sup _{\Omega}|u|$ and $\sup _{\partial \Omega}|D u|$. In certain cases, e.g. for operators of form $Q u=a^{i j}\left(u_{k}\right) u_{i j}$ the derivation of steps (i) and (iii) is trivial. The purpose of this work is to give an account of various sufficient conditions involving Q and Ω under which the estimate (ii) may be carried out. The results are not substantially new and may largely be found in the union of the works [5], [7] and [9]. A fairly complete treatment of the elliptic situation, including demonstrations of the necessity of many of the conditions, is given by Serrin in [7]. Our aim here is primarily to present an alternative approach, retaining key ideas, which we believe provides some simplification of the important work of [7]. We also attempt some historical alignment by considering initially the situation that holds for convex or arbitrary C^{2} domains, roughly known before 1966, and from there covering the recent theory initiated by the work of Jenkins and Serrin on the minimal surface equation [4]. Finally we note some extensions to parabolic equations.

